Metamath Proof Explorer


Theorem cdlemftr1

Description: Part of proof of Lemma G of Crawley p. 116, sixth line of third paragraph on p. 117: there is "a translation h, different from the identity, such that tr h =/= tr f." (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemftr.b B=BaseK
cdlemftr.h H=LHypK
cdlemftr.t T=LTrnKW
cdlemftr.r R=trLKW
Assertion cdlemftr1 KHLWHfTfIBRfX

Proof

Step Hyp Ref Expression
1 cdlemftr.b B=BaseK
2 cdlemftr.h H=LHypK
3 cdlemftr.t T=LTrnKW
4 cdlemftr.r R=trLKW
5 1 2 3 4 cdlemftr2 KHLWHfTfIBRfXRfX
6 3simpa fIBRfXRfXfIBRfX
7 6 reximi fTfIBRfXRfXfTfIBRfX
8 5 7 syl KHLWHfTfIBRfX