Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg46.b |
|- B = ( Base ` K ) |
2 |
|
cdlemg46.h |
|- H = ( LHyp ` K ) |
3 |
|
cdlemg46.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
cdlemg46.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> K e. HL ) |
6 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) ) |
7 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> h e. T ) |
8 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> h =/= ( _I |` B ) ) |
9 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
10 |
1 9 2 3 4
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ h e. T /\ h =/= ( _I |` B ) ) -> ( R ` h ) e. ( Atoms ` K ) ) |
11 |
6 7 8 10
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` h ) e. ( Atoms ` K ) ) |
12 |
11
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` h ) e. ( Atoms ` K ) ) |
13 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> F e. T ) |
14 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> F =/= ( _I |` B ) ) |
15 |
1 9 2 3 4
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> ( R ` F ) e. ( Atoms ` K ) ) |
16 |
6 13 14 15
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` F ) e. ( Atoms ` K ) ) |
17 |
16
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` F ) e. ( Atoms ` K ) ) |
18 |
|
simpl33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` h ) =/= ( R ` F ) ) |
19 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) |
20 |
2 3
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ h e. T /\ F e. T ) -> ( h o. F ) e. T ) |
21 |
6 7 13 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( h o. F ) e. T ) |
22 |
2 3
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) |
23 |
6 13 22
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> `' F e. T ) |
24 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
25 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
26 |
24 25 2 3 4
|
trlco |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h o. F ) e. T /\ `' F e. T ) -> ( R ` ( ( h o. F ) o. `' F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` `' F ) ) ) |
27 |
6 21 23 26
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` ( ( h o. F ) o. `' F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` `' F ) ) ) |
28 |
|
coass |
|- ( ( h o. F ) o. `' F ) = ( h o. ( F o. `' F ) ) |
29 |
1 2 3
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F : B -1-1-onto-> B ) |
30 |
6 13 29
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> F : B -1-1-onto-> B ) |
31 |
|
f1ococnv2 |
|- ( F : B -1-1-onto-> B -> ( F o. `' F ) = ( _I |` B ) ) |
32 |
30 31
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( F o. `' F ) = ( _I |` B ) ) |
33 |
32
|
coeq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( h o. ( F o. `' F ) ) = ( h o. ( _I |` B ) ) ) |
34 |
1 2 3
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ h e. T ) -> h : B -1-1-onto-> B ) |
35 |
6 7 34
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> h : B -1-1-onto-> B ) |
36 |
|
f1of |
|- ( h : B -1-1-onto-> B -> h : B --> B ) |
37 |
|
fcoi1 |
|- ( h : B --> B -> ( h o. ( _I |` B ) ) = h ) |
38 |
35 36 37
|
3syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( h o. ( _I |` B ) ) = h ) |
39 |
33 38
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( h o. ( F o. `' F ) ) = h ) |
40 |
28 39
|
syl5eq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( ( h o. F ) o. `' F ) = h ) |
41 |
40
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` ( ( h o. F ) o. `' F ) ) = ( R ` h ) ) |
42 |
2 3 4
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` `' F ) = ( R ` F ) ) |
43 |
6 13 42
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` `' F ) = ( R ` F ) ) |
44 |
43
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` `' F ) ) = ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) |
45 |
27 41 44
|
3brtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` h ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) |
46 |
45
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` h ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) |
47 |
24 25 9
|
hlatlej2 |
|- ( ( K e. HL /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( R ` F ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) |
48 |
5 19 17 47
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` F ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) |
49 |
5
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> K e. Lat ) |
50 |
1 9
|
atbase |
|- ( ( R ` h ) e. ( Atoms ` K ) -> ( R ` h ) e. B ) |
51 |
12 50
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` h ) e. B ) |
52 |
1 9
|
atbase |
|- ( ( R ` F ) e. ( Atoms ` K ) -> ( R ` F ) e. B ) |
53 |
17 52
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` F ) e. B ) |
54 |
1 25 9
|
hlatjcl |
|- ( ( K e. HL /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) e. B ) |
55 |
5 19 17 54
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) e. B ) |
56 |
1 24 25
|
latjle12 |
|- ( ( K e. Lat /\ ( ( R ` h ) e. B /\ ( R ` F ) e. B /\ ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) e. B ) ) -> ( ( ( R ` h ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) /\ ( R ` F ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) <-> ( ( R ` h ) ( join ` K ) ( R ` F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) ) |
57 |
49 51 53 55 56
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( ( ( R ` h ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) /\ ( R ` F ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) <-> ( ( R ` h ) ( join ` K ) ( R ` F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) ) |
58 |
46 48 57
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( ( R ` h ) ( join ` K ) ( R ` F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) |
59 |
24 25 9
|
2atjlej |
|- ( ( K e. HL /\ ( ( R ` h ) e. ( Atoms ` K ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` h ) =/= ( R ` F ) ) /\ ( ( R ` ( h o. F ) ) e. ( Atoms ` K ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( ( R ` h ) ( join ` K ) ( R ` F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) ) -> ( R ` ( h o. F ) ) =/= ( R ` F ) ) |
60 |
5 12 17 18 19 17 58 59
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` ( h o. F ) ) =/= ( R ` F ) ) |
61 |
|
nelne2 |
|- ( ( ( R ` F ) e. ( Atoms ` K ) /\ -. ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` F ) =/= ( R ` ( h o. F ) ) ) |
62 |
61
|
necomd |
|- ( ( ( R ` F ) e. ( Atoms ` K ) /\ -. ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` ( h o. F ) ) =/= ( R ` F ) ) |
63 |
16 62
|
sylan |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ -. ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` ( h o. F ) ) =/= ( R ` F ) ) |
64 |
60 63
|
pm2.61dan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` ( h o. F ) ) =/= ( R ` F ) ) |