| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg46.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | cdlemg46.h |  |-  H = ( LHyp ` K ) | 
						
							| 3 |  | cdlemg46.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 4 |  | cdlemg46.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 5 |  | simpl1l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> K e. HL ) | 
						
							| 6 |  | simp1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 7 |  | simp2r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> h e. T ) | 
						
							| 8 |  | simp32 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> h =/= ( _I |` B ) ) | 
						
							| 9 |  | eqid |  |-  ( Atoms ` K ) = ( Atoms ` K ) | 
						
							| 10 | 1 9 2 3 4 | trlnidat |  |-  ( ( ( K e. HL /\ W e. H ) /\ h e. T /\ h =/= ( _I |` B ) ) -> ( R ` h ) e. ( Atoms ` K ) ) | 
						
							| 11 | 6 7 8 10 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` h ) e. ( Atoms ` K ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` h ) e. ( Atoms ` K ) ) | 
						
							| 13 |  | simp2l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> F e. T ) | 
						
							| 14 |  | simp31 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> F =/= ( _I |` B ) ) | 
						
							| 15 | 1 9 2 3 4 | trlnidat |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> ( R ` F ) e. ( Atoms ` K ) ) | 
						
							| 16 | 6 13 14 15 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` F ) e. ( Atoms ` K ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` F ) e. ( Atoms ` K ) ) | 
						
							| 18 |  | simpl33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` h ) =/= ( R ` F ) ) | 
						
							| 19 |  | simpr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) | 
						
							| 20 | 2 3 | ltrnco |  |-  ( ( ( K e. HL /\ W e. H ) /\ h e. T /\ F e. T ) -> ( h o. F ) e. T ) | 
						
							| 21 | 6 7 13 20 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( h o. F ) e. T ) | 
						
							| 22 | 2 3 | ltrncnv |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) | 
						
							| 23 | 6 13 22 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> `' F e. T ) | 
						
							| 24 |  | eqid |  |-  ( le ` K ) = ( le ` K ) | 
						
							| 25 |  | eqid |  |-  ( join ` K ) = ( join ` K ) | 
						
							| 26 | 24 25 2 3 4 | trlco |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( h o. F ) e. T /\ `' F e. T ) -> ( R ` ( ( h o. F ) o. `' F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` `' F ) ) ) | 
						
							| 27 | 6 21 23 26 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` ( ( h o. F ) o. `' F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` `' F ) ) ) | 
						
							| 28 |  | coass |  |-  ( ( h o. F ) o. `' F ) = ( h o. ( F o. `' F ) ) | 
						
							| 29 | 1 2 3 | ltrn1o |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F : B -1-1-onto-> B ) | 
						
							| 30 | 6 13 29 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> F : B -1-1-onto-> B ) | 
						
							| 31 |  | f1ococnv2 |  |-  ( F : B -1-1-onto-> B -> ( F o. `' F ) = ( _I |` B ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( F o. `' F ) = ( _I |` B ) ) | 
						
							| 33 | 32 | coeq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( h o. ( F o. `' F ) ) = ( h o. ( _I |` B ) ) ) | 
						
							| 34 | 1 2 3 | ltrn1o |  |-  ( ( ( K e. HL /\ W e. H ) /\ h e. T ) -> h : B -1-1-onto-> B ) | 
						
							| 35 | 6 7 34 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> h : B -1-1-onto-> B ) | 
						
							| 36 |  | f1of |  |-  ( h : B -1-1-onto-> B -> h : B --> B ) | 
						
							| 37 |  | fcoi1 |  |-  ( h : B --> B -> ( h o. ( _I |` B ) ) = h ) | 
						
							| 38 | 35 36 37 | 3syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( h o. ( _I |` B ) ) = h ) | 
						
							| 39 | 33 38 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( h o. ( F o. `' F ) ) = h ) | 
						
							| 40 | 28 39 | eqtrid |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( ( h o. F ) o. `' F ) = h ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` ( ( h o. F ) o. `' F ) ) = ( R ` h ) ) | 
						
							| 42 | 2 3 4 | trlcnv |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` `' F ) = ( R ` F ) ) | 
						
							| 43 | 6 13 42 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` `' F ) = ( R ` F ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` `' F ) ) = ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) | 
						
							| 45 | 27 41 44 | 3brtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` h ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` h ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) | 
						
							| 47 | 24 25 9 | hlatlej2 |  |-  ( ( K e. HL /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( R ` F ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) | 
						
							| 48 | 5 19 17 47 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` F ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) | 
						
							| 49 | 5 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> K e. Lat ) | 
						
							| 50 | 1 9 | atbase |  |-  ( ( R ` h ) e. ( Atoms ` K ) -> ( R ` h ) e. B ) | 
						
							| 51 | 12 50 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` h ) e. B ) | 
						
							| 52 | 1 9 | atbase |  |-  ( ( R ` F ) e. ( Atoms ` K ) -> ( R ` F ) e. B ) | 
						
							| 53 | 17 52 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` F ) e. B ) | 
						
							| 54 | 1 25 9 | hlatjcl |  |-  ( ( K e. HL /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) e. B ) | 
						
							| 55 | 5 19 17 54 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) e. B ) | 
						
							| 56 | 1 24 25 | latjle12 |  |-  ( ( K e. Lat /\ ( ( R ` h ) e. B /\ ( R ` F ) e. B /\ ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) e. B ) ) -> ( ( ( R ` h ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) /\ ( R ` F ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) <-> ( ( R ` h ) ( join ` K ) ( R ` F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) ) | 
						
							| 57 | 49 51 53 55 56 | syl13anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( ( ( R ` h ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) /\ ( R ` F ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) <-> ( ( R ` h ) ( join ` K ) ( R ` F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) ) | 
						
							| 58 | 46 48 57 | mpbi2and |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( ( R ` h ) ( join ` K ) ( R ` F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) | 
						
							| 59 | 24 25 9 | 2atjlej |  |-  ( ( K e. HL /\ ( ( R ` h ) e. ( Atoms ` K ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` h ) =/= ( R ` F ) ) /\ ( ( R ` ( h o. F ) ) e. ( Atoms ` K ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( ( R ` h ) ( join ` K ) ( R ` F ) ) ( le ` K ) ( ( R ` ( h o. F ) ) ( join ` K ) ( R ` F ) ) ) ) -> ( R ` ( h o. F ) ) =/= ( R ` F ) ) | 
						
							| 60 | 5 12 17 18 19 17 58 59 | syl133anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` ( h o. F ) ) =/= ( R ` F ) ) | 
						
							| 61 |  | nelne2 |  |-  ( ( ( R ` F ) e. ( Atoms ` K ) /\ -. ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` F ) =/= ( R ` ( h o. F ) ) ) | 
						
							| 62 | 61 | necomd |  |-  ( ( ( R ` F ) e. ( Atoms ` K ) /\ -. ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` ( h o. F ) ) =/= ( R ` F ) ) | 
						
							| 63 | 16 62 | sylan |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) /\ -. ( R ` ( h o. F ) ) e. ( Atoms ` K ) ) -> ( R ` ( h o. F ) ) =/= ( R ` F ) ) | 
						
							| 64 | 60 63 | pm2.61dan |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ h e. T ) /\ ( F =/= ( _I |` B ) /\ h =/= ( _I |` B ) /\ ( R ` h ) =/= ( R ` F ) ) ) -> ( R ` ( h o. F ) ) =/= ( R ` F ) ) |