Step |
Hyp |
Ref |
Expression |
1 |
|
ltrncom.h |
|- H = ( LHyp ` K ) |
2 |
|
ltrncom.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F = ( _I |` ( Base ` K ) ) ) -> ( K e. HL /\ W e. H ) ) |
4 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F = ( _I |` ( Base ` K ) ) ) -> F e. T ) |
5 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F = ( _I |` ( Base ` K ) ) ) -> G e. T ) |
6 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F = ( _I |` ( Base ` K ) ) ) -> F = ( _I |` ( Base ` K ) ) ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
7 1 2
|
cdlemg47a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ F = ( _I |` ( Base ` K ) ) ) -> ( F o. G ) = ( G o. F ) ) |
9 |
3 4 5 6 8
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F = ( _I |` ( Base ` K ) ) ) -> ( F o. G ) = ( G o. F ) ) |
10 |
|
simpll1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) = ( ( ( trL ` K ) ` W ) ` G ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simpll2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) = ( ( ( trL ` K ) ` W ) ` G ) ) -> F e. T ) |
12 |
|
simpll3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) = ( ( ( trL ` K ) ` W ) ` G ) ) -> G e. T ) |
13 |
|
simplr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) = ( ( ( trL ` K ) ` W ) ` G ) ) -> F =/= ( _I |` ( Base ` K ) ) ) |
14 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) = ( ( ( trL ` K ) ` W ) ` G ) ) -> ( ( ( trL ` K ) ` W ) ` F ) = ( ( ( trL ` K ) ` W ) ` G ) ) |
15 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
16 |
7 1 2 15
|
cdlemg48 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( F =/= ( _I |` ( Base ` K ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) = ( ( ( trL ` K ) ` W ) ` G ) ) ) -> ( F o. G ) = ( G o. F ) ) |
17 |
10 11 12 13 14 16
|
syl122anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) = ( ( ( trL ` K ) ` W ) ` G ) ) -> ( F o. G ) = ( G o. F ) ) |
18 |
|
simpll1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) =/= ( ( ( trL ` K ) ` W ) ` G ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
|
simpll2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) =/= ( ( ( trL ` K ) ` W ) ` G ) ) -> F e. T ) |
20 |
|
simpll3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) =/= ( ( ( trL ` K ) ` W ) ` G ) ) -> G e. T ) |
21 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) =/= ( ( ( trL ` K ) ` W ) ` G ) ) -> ( ( ( trL ` K ) ` W ) ` F ) =/= ( ( ( trL ` K ) ` W ) ` G ) ) |
22 |
1 2 15
|
cdlemg44 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( ( trL ` K ) ` W ) ` F ) =/= ( ( ( trL ` K ) ` W ) ` G ) ) -> ( F o. G ) = ( G o. F ) ) |
23 |
18 19 20 21 22
|
syl121anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) /\ ( ( ( trL ` K ) ` W ) ` F ) =/= ( ( ( trL ` K ) ` W ) ` G ) ) -> ( F o. G ) = ( G o. F ) ) |
24 |
17 23
|
pm2.61dane |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ F =/= ( _I |` ( Base ` K ) ) ) -> ( F o. G ) = ( G o. F ) ) |
25 |
9 24
|
pm2.61dane |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) -> ( F o. G ) = ( G o. F ) ) |