Step |
Hyp |
Ref |
Expression |
1 |
|
ltrncom.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
ltrncom.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
4 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐹 ∈ 𝑇 ) |
5 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐺 ∈ 𝑇 ) |
6 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
8 |
7 1 2
|
cdlemg47a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |
9 |
3 4 5 6 8
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |
10 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simpll2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → 𝐹 ∈ 𝑇 ) |
12 |
|
simpll3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → 𝐺 ∈ 𝑇 ) |
13 |
|
simplr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
14 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) |
15 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
7 1 2 15
|
cdlemg48 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |
17 |
10 11 12 13 14 16
|
syl122anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |
18 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
|
simpll2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → 𝐹 ∈ 𝑇 ) |
20 |
|
simpll3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → 𝐺 ∈ 𝑇 ) |
21 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) |
22 |
1 2 15
|
cdlemg44 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |
23 |
18 19 20 21 22
|
syl121anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |
24 |
17 23
|
pm2.61dane |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |
25 |
9 24
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |