Metamath Proof Explorer


Theorem ltrnco4

Description: Rearrange a composition of 4 translations, analogous to an4 . (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses ltrncom.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrncom.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrnco4 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐸𝑇𝐹𝑇 ) → ( ( 𝐷𝐸 ) ∘ ( 𝐹𝐺 ) ) = ( ( 𝐷𝐹 ) ∘ ( 𝐸𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 ltrncom.h 𝐻 = ( LHyp ‘ 𝐾 )
2 ltrncom.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 1 2 ltrncom ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐸𝑇𝐹𝑇 ) → ( 𝐸𝐹 ) = ( 𝐹𝐸 ) )
4 3 coeq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐸𝑇𝐹𝑇 ) → ( ( 𝐸𝐹 ) ∘ 𝐺 ) = ( ( 𝐹𝐸 ) ∘ 𝐺 ) )
5 coass ( ( 𝐸𝐹 ) ∘ 𝐺 ) = ( 𝐸 ∘ ( 𝐹𝐺 ) )
6 coass ( ( 𝐹𝐸 ) ∘ 𝐺 ) = ( 𝐹 ∘ ( 𝐸𝐺 ) )
7 4 5 6 3eqtr3g ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐸𝑇𝐹𝑇 ) → ( 𝐸 ∘ ( 𝐹𝐺 ) ) = ( 𝐹 ∘ ( 𝐸𝐺 ) ) )
8 7 coeq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐸𝑇𝐹𝑇 ) → ( 𝐷 ∘ ( 𝐸 ∘ ( 𝐹𝐺 ) ) ) = ( 𝐷 ∘ ( 𝐹 ∘ ( 𝐸𝐺 ) ) ) )
9 coass ( ( 𝐷𝐸 ) ∘ ( 𝐹𝐺 ) ) = ( 𝐷 ∘ ( 𝐸 ∘ ( 𝐹𝐺 ) ) )
10 coass ( ( 𝐷𝐹 ) ∘ ( 𝐸𝐺 ) ) = ( 𝐷 ∘ ( 𝐹 ∘ ( 𝐸𝐺 ) ) )
11 8 9 10 3eqtr4g ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐸𝑇𝐹𝑇 ) → ( ( 𝐷𝐸 ) ∘ ( 𝐹𝐺 ) ) = ( ( 𝐷𝐹 ) ∘ ( 𝐸𝐺 ) ) )