Step |
Hyp |
Ref |
Expression |
1 |
|
trljco.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
trljco.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
trljco.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
trljco.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
coeq1 |
⊢ ( 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) → ( 𝐹 ∘ 𝐺 ) = ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
7 |
6 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
8 |
7
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
9 |
|
f1of |
⊢ ( 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → 𝐺 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) |
10 |
|
fcoi2 |
⊢ ( 𝐺 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) = 𝐺 ) |
11 |
8 9 10
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) = 𝐺 ) |
12 |
5 11
|
sylan9eqr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ∘ 𝐺 ) = 𝐺 ) |
13 |
12
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝑅 ‘ 𝐺 ) ) |
14 |
13
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
15 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → 𝐾 ∈ HL ) |
16 |
15
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → 𝐾 ∈ Lat ) |
17 |
6 2 3 4
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
17
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
6 1
|
latjidm |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑅 ‘ 𝐹 ) ) |
20 |
16 18 19
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑅 ‘ 𝐹 ) ) |
21 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
22 |
15 21
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → 𝐾 ∈ OL ) |
23 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
24 |
6 1 23
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 0. ‘ 𝐾 ) ) = ( 𝑅 ‘ 𝐹 ) ) |
25 |
22 18 24
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 0. ‘ 𝐾 ) ) = ( 𝑅 ‘ 𝐹 ) ) |
26 |
20 25
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐹 ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 0. ‘ 𝐾 ) ) ) |
27 |
26
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐺 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐹 ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 0. ‘ 𝐾 ) ) ) |
28 |
|
coeq2 |
⊢ ( 𝐺 = ( I ↾ ( Base ‘ 𝐾 ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
29 |
6 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
30 |
29
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
31 |
|
f1of |
⊢ ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → 𝐹 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) |
32 |
|
fcoi1 |
⊢ ( 𝐹 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) = 𝐹 ) |
33 |
30 31 32
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) = 𝐹 ) |
34 |
28 33
|
sylan9eqr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐺 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ∘ 𝐺 ) = 𝐹 ) |
35 |
34
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐺 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝑅 ‘ 𝐹 ) ) |
36 |
35
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐺 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
37 |
6 23 2 3 4
|
trlid0b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝐺 = ( I ↾ ( Base ‘ 𝐾 ) ) ↔ ( 𝑅 ‘ 𝐺 ) = ( 0. ‘ 𝐾 ) ) ) |
38 |
37
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐺 = ( I ↾ ( Base ‘ 𝐾 ) ) ↔ ( 𝑅 ‘ 𝐺 ) = ( 0. ‘ 𝐾 ) ) ) |
39 |
38
|
biimpa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐺 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅 ‘ 𝐺 ) = ( 0. ‘ 𝐾 ) ) |
40 |
39
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐺 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 0. ‘ 𝐾 ) ) ) |
41 |
27 36 40
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐺 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
42 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
43 |
16
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → 𝐾 ∈ Lat ) |
44 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
45 |
2 3
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
46 |
6 2 3 4
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
44 45 46
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
48 |
6 1
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
49 |
16 18 47 48
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
50 |
49
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
51 |
6 2 3 4
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
52 |
51
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
53 |
6 1
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
54 |
16 18 52 53
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
55 |
54
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
56 |
6 42 1
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝐹 ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
57 |
16 18 52 56
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
58 |
42 1 2 3 4
|
trlco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
59 |
6 42 1
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑅 ‘ 𝐹 ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ↔ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ) |
60 |
16 18 47 54 59
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( ( 𝑅 ‘ 𝐹 ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ↔ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ) |
61 |
57 58 60
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
62 |
61
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
63 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) |
64 |
63
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐹 ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
65 |
6 42 1
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝐹 ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
66 |
16 18 47 65
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
67 |
20 66
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
69 |
64 68
|
eqbrtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
70 |
6 42 43 50 55 62 69
|
latasymd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
71 |
61
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
72 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐾 ∈ HL ) |
73 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
74 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐹 ∈ 𝑇 ) |
75 |
|
simpr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
76 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
77 |
6 76 2 3 4
|
trlnidat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) |
78 |
73 74 75 77
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) |
79 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐺 ∈ 𝑇 ) |
80 |
74 79
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) |
81 |
|
simpr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
82 |
76 2 3 4
|
trlcoat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
83 |
73 80 81 82
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Atoms ‘ 𝐾 ) ) |
84 |
|
simpr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
85 |
6 2 3 4
|
trlcone |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) → ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) |
86 |
73 80 81 84 85
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) |
87 |
6 76 2 3 4
|
trlnidat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Atoms ‘ 𝐾 ) ) |
88 |
73 79 84 87
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Atoms ‘ 𝐾 ) ) |
89 |
42 1 76
|
ps-1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐺 ) ∈ ( Atoms ‘ 𝐾 ) ) ) → ( ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ↔ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ) |
90 |
72 78 83 86 78 88 89
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ( le ‘ 𝐾 ) ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ↔ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ) |
91 |
71 90
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ 𝐺 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
92 |
14 41 70 91
|
pm2.61da3ne |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |