Step |
Hyp |
Ref |
Expression |
1 |
|
trlcoat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
trlcoat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
trlcoat.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
trlcoat.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
2 3
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
6 |
5
|
3expb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
8 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
9 |
7 8 2 3 4
|
trlid0b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ↔ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 0. ‘ 𝐾 ) ) ) |
10 |
6 9
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ↔ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 0. ‘ 𝐾 ) ) ) |
11 |
|
coass |
⊢ ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) |
12 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐹 ∈ 𝑇 ) |
14 |
7 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
15 |
12 13 14
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
16 |
|
f1ococnv1 |
⊢ ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
18 |
17
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) ) |
19 |
|
coeq2 |
⊢ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) → ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) = ( ◡ 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) = ( ◡ 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
21 |
11 18 20
|
3eqtr3a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) = ( ◡ 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
22 |
|
simplrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐺 ∈ 𝑇 ) |
23 |
7 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
24 |
12 22 23
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
25 |
|
f1of |
⊢ ( 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → 𝐺 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) |
26 |
|
fcoi2 |
⊢ ( 𝐺 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) = 𝐺 ) |
27 |
24 25 26
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) = 𝐺 ) |
28 |
2 3
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
29 |
12 13 28
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ◡ 𝐹 ∈ 𝑇 ) |
30 |
7 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ◡ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
31 |
12 29 30
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ◡ 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
32 |
|
f1of |
⊢ ( ◡ 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → ◡ 𝐹 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) |
33 |
|
fcoi1 |
⊢ ( ◡ 𝐹 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( ◡ 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ◡ 𝐹 ) |
34 |
31 32 33
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ◡ 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ◡ 𝐹 ) |
35 |
21 27 34
|
3eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐺 = ◡ 𝐹 ) |
36 |
35
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅 ‘ 𝐺 ) = ( 𝑅 ‘ ◡ 𝐹 ) ) |
37 |
2 3 4
|
trlcnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |
38 |
12 13 37
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |
39 |
36 38
|
eqtr2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) |
40 |
39
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ) |
41 |
10 40
|
sylbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 0. ‘ 𝐾 ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝐺 ) ) ) |
42 |
41
|
necon3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ≠ ( 0. ‘ 𝐾 ) ) ) |
43 |
8 1 2 3 4
|
trlatn0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ 𝐴 ↔ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ≠ ( 0. ‘ 𝐾 ) ) ) |
44 |
6 43
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ 𝐴 ↔ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ≠ ( 0. ‘ 𝐾 ) ) ) |
45 |
42 44
|
sylibrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ 𝐴 ) ) |
46 |
45
|
3impia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ∈ 𝐴 ) |