Metamath Proof Explorer


Theorem trlcoat

Description: The trace of a composition of two translations is an atom if their traces are different. (Contributed by NM, 15-Jun-2013)

Ref Expression
Hypotheses trlcoat.a 𝐴 = ( Atoms ‘ 𝐾 )
trlcoat.h 𝐻 = ( LHyp ‘ 𝐾 )
trlcoat.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trlcoat.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlcoat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑅 ‘ ( 𝐹𝐺 ) ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 trlcoat.a 𝐴 = ( Atoms ‘ 𝐾 )
2 trlcoat.h 𝐻 = ( LHyp ‘ 𝐾 )
3 trlcoat.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 trlcoat.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
5 2 3 ltrnco ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) → ( 𝐹𝐺 ) ∈ 𝑇 )
6 5 3expb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐹𝐺 ) ∈ 𝑇 )
7 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
8 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
9 7 8 2 3 4 trlid0b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝐺 ) ∈ 𝑇 ) → ( ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ↔ ( 𝑅 ‘ ( 𝐹𝐺 ) ) = ( 0. ‘ 𝐾 ) ) )
10 6 9 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ↔ ( 𝑅 ‘ ( 𝐹𝐺 ) ) = ( 0. ‘ 𝐾 ) ) )
11 coass ( ( 𝐹𝐹 ) ∘ 𝐺 ) = ( 𝐹 ∘ ( 𝐹𝐺 ) )
12 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 simplrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐹𝑇 )
14 7 2 3 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
15 12 13 14 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
16 f1ococnv1 ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → ( 𝐹𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) )
17 15 16 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) )
18 17 coeq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐹𝐹 ) ∘ 𝐺 ) = ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) )
19 coeq2 ( ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) → ( 𝐹 ∘ ( 𝐹𝐺 ) ) = ( 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) )
20 19 adantl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ∘ ( 𝐹𝐺 ) ) = ( 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) )
21 11 18 20 3eqtr3a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) = ( 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) )
22 simplrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐺𝑇 )
23 7 2 3 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ) → 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
24 12 22 23 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
25 f1of ( 𝐺 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → 𝐺 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) )
26 fcoi2 ( 𝐺 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) = 𝐺 )
27 24 25 26 3syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ 𝐺 ) = 𝐺 )
28 2 3 ltrncnv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹𝑇 )
29 12 13 28 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐹𝑇 )
30 7 2 3 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
31 12 29 30 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
32 f1of ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → 𝐹 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) )
33 fcoi1 ( 𝐹 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) = 𝐹 )
34 31 32 33 3syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ∘ ( I ↾ ( Base ‘ 𝐾 ) ) ) = 𝐹 )
35 21 27 34 3eqtr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐺 = 𝐹 )
36 35 fveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅𝐺 ) = ( 𝑅 𝐹 ) )
37 2 3 4 trlcnv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅 𝐹 ) = ( 𝑅𝐹 ) )
38 12 13 37 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅 𝐹 ) = ( 𝑅𝐹 ) )
39 36 38 eqtr2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑅𝐹 ) = ( 𝑅𝐺 ) )
40 39 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝐹𝐺 ) = ( I ↾ ( Base ‘ 𝐾 ) ) → ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ) )
41 10 40 sylbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑅 ‘ ( 𝐹𝐺 ) ) = ( 0. ‘ 𝐾 ) → ( 𝑅𝐹 ) = ( 𝑅𝐺 ) ) )
42 41 necon3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) → ( 𝑅 ‘ ( 𝐹𝐺 ) ) ≠ ( 0. ‘ 𝐾 ) ) )
43 8 1 2 3 4 trlatn0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝐺 ) ∈ 𝑇 ) → ( ( 𝑅 ‘ ( 𝐹𝐺 ) ) ∈ 𝐴 ↔ ( 𝑅 ‘ ( 𝐹𝐺 ) ) ≠ ( 0. ‘ 𝐾 ) ) )
44 6 43 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑅 ‘ ( 𝐹𝐺 ) ) ∈ 𝐴 ↔ ( 𝑅 ‘ ( 𝐹𝐺 ) ) ≠ ( 0. ‘ 𝐾 ) ) )
45 42 44 sylibrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) → ( 𝑅 ‘ ( 𝐹𝐺 ) ) ∈ 𝐴 ) )
46 45 3impia ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑅 ‘ ( 𝐹𝐺 ) ) ∈ 𝐴 )