| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlcoat.a |
|- A = ( Atoms ` K ) |
| 2 |
|
trlcoat.h |
|- H = ( LHyp ` K ) |
| 3 |
|
trlcoat.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
trlcoat.r |
|- R = ( ( trL ` K ) ` W ) |
| 5 |
2 3
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) -> ( F o. G ) e. T ) |
| 6 |
5
|
3expb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) -> ( F o. G ) e. T ) |
| 7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 8 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 9 |
7 8 2 3 4
|
trlid0b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F o. G ) e. T ) -> ( ( F o. G ) = ( _I |` ( Base ` K ) ) <-> ( R ` ( F o. G ) ) = ( 0. ` K ) ) ) |
| 10 |
6 9
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) -> ( ( F o. G ) = ( _I |` ( Base ` K ) ) <-> ( R ` ( F o. G ) ) = ( 0. ` K ) ) ) |
| 11 |
|
coass |
|- ( ( `' F o. F ) o. G ) = ( `' F o. ( F o. G ) ) |
| 12 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
simplrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> F e. T ) |
| 14 |
7 2 3
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
| 15 |
12 13 14
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> F : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
| 16 |
|
f1ococnv1 |
|- ( F : ( Base ` K ) -1-1-onto-> ( Base ` K ) -> ( `' F o. F ) = ( _I |` ( Base ` K ) ) ) |
| 17 |
15 16
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> ( `' F o. F ) = ( _I |` ( Base ` K ) ) ) |
| 18 |
17
|
coeq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> ( ( `' F o. F ) o. G ) = ( ( _I |` ( Base ` K ) ) o. G ) ) |
| 19 |
|
coeq2 |
|- ( ( F o. G ) = ( _I |` ( Base ` K ) ) -> ( `' F o. ( F o. G ) ) = ( `' F o. ( _I |` ( Base ` K ) ) ) ) |
| 20 |
19
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> ( `' F o. ( F o. G ) ) = ( `' F o. ( _I |` ( Base ` K ) ) ) ) |
| 21 |
11 18 20
|
3eqtr3a |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> ( ( _I |` ( Base ` K ) ) o. G ) = ( `' F o. ( _I |` ( Base ` K ) ) ) ) |
| 22 |
|
simplrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> G e. T ) |
| 23 |
7 2 3
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> G : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
| 24 |
12 22 23
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> G : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
| 25 |
|
f1of |
|- ( G : ( Base ` K ) -1-1-onto-> ( Base ` K ) -> G : ( Base ` K ) --> ( Base ` K ) ) |
| 26 |
|
fcoi2 |
|- ( G : ( Base ` K ) --> ( Base ` K ) -> ( ( _I |` ( Base ` K ) ) o. G ) = G ) |
| 27 |
24 25 26
|
3syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> ( ( _I |` ( Base ` K ) ) o. G ) = G ) |
| 28 |
2 3
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) |
| 29 |
12 13 28
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> `' F e. T ) |
| 30 |
7 2 3
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ `' F e. T ) -> `' F : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
| 31 |
12 29 30
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> `' F : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
| 32 |
|
f1of |
|- ( `' F : ( Base ` K ) -1-1-onto-> ( Base ` K ) -> `' F : ( Base ` K ) --> ( Base ` K ) ) |
| 33 |
|
fcoi1 |
|- ( `' F : ( Base ` K ) --> ( Base ` K ) -> ( `' F o. ( _I |` ( Base ` K ) ) ) = `' F ) |
| 34 |
31 32 33
|
3syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> ( `' F o. ( _I |` ( Base ` K ) ) ) = `' F ) |
| 35 |
21 27 34
|
3eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> G = `' F ) |
| 36 |
35
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> ( R ` G ) = ( R ` `' F ) ) |
| 37 |
2 3 4
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` `' F ) = ( R ` F ) ) |
| 38 |
12 13 37
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> ( R ` `' F ) = ( R ` F ) ) |
| 39 |
36 38
|
eqtr2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) /\ ( F o. G ) = ( _I |` ( Base ` K ) ) ) -> ( R ` F ) = ( R ` G ) ) |
| 40 |
39
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) -> ( ( F o. G ) = ( _I |` ( Base ` K ) ) -> ( R ` F ) = ( R ` G ) ) ) |
| 41 |
10 40
|
sylbird |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) -> ( ( R ` ( F o. G ) ) = ( 0. ` K ) -> ( R ` F ) = ( R ` G ) ) ) |
| 42 |
41
|
necon3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) -> ( ( R ` F ) =/= ( R ` G ) -> ( R ` ( F o. G ) ) =/= ( 0. ` K ) ) ) |
| 43 |
8 1 2 3 4
|
trlatn0 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F o. G ) e. T ) -> ( ( R ` ( F o. G ) ) e. A <-> ( R ` ( F o. G ) ) =/= ( 0. ` K ) ) ) |
| 44 |
6 43
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) -> ( ( R ` ( F o. G ) ) e. A <-> ( R ` ( F o. G ) ) =/= ( 0. ` K ) ) ) |
| 45 |
42 44
|
sylibrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) ) -> ( ( R ` F ) =/= ( R ` G ) -> ( R ` ( F o. G ) ) e. A ) ) |
| 46 |
45
|
3impia |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( R ` ( F o. G ) ) e. A ) |