Step |
Hyp |
Ref |
Expression |
1 |
|
trlcoat.a |
|- A = ( Atoms ` K ) |
2 |
|
trlcoat.h |
|- H = ( LHyp ` K ) |
3 |
|
trlcoat.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
trlcoat.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( K e. HL /\ W e. H ) ) |
6 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( R ` F ) =/= ( R ` G ) ) -> F e. T ) |
7 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( R ` F ) =/= ( R ` G ) ) -> G e. T ) |
8 |
2 3
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> `' G e. T ) |
9 |
5 7 8
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( R ` F ) =/= ( R ` G ) ) -> `' G e. T ) |
10 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( R ` F ) =/= ( R ` G ) ) |
11 |
2 3 4
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` `' G ) = ( R ` G ) ) |
12 |
5 7 11
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( R ` `' G ) = ( R ` G ) ) |
13 |
10 12
|
neeqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( R ` F ) =/= ( R ` `' G ) ) |
14 |
1 2 3 4
|
trlcoat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ `' G e. T ) /\ ( R ` F ) =/= ( R ` `' G ) ) -> ( R ` ( F o. `' G ) ) e. A ) |
15 |
5 6 9 13 14
|
syl121anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( R ` F ) =/= ( R ` G ) ) -> ( R ` ( F o. `' G ) ) e. A ) |