Metamath Proof Explorer


Theorem trlcocnvat

Description: Commonly used special case of trlcoat . (Contributed by NM, 1-Jul-2013)

Ref Expression
Hypotheses trlcoat.a A=AtomsK
trlcoat.h H=LHypK
trlcoat.t T=LTrnKW
trlcoat.r R=trLKW
Assertion trlcocnvat KHLWHFTGTRFRGRFG-1A

Proof

Step Hyp Ref Expression
1 trlcoat.a A=AtomsK
2 trlcoat.h H=LHypK
3 trlcoat.t T=LTrnKW
4 trlcoat.r R=trLKW
5 simp1 KHLWHFTGTRFRGKHLWH
6 simp2l KHLWHFTGTRFRGFT
7 simp2r KHLWHFTGTRFRGGT
8 2 3 ltrncnv KHLWHGTG-1T
9 5 7 8 syl2anc KHLWHFTGTRFRGG-1T
10 simp3 KHLWHFTGTRFRGRFRG
11 2 3 4 trlcnv KHLWHGTRG-1=RG
12 5 7 11 syl2anc KHLWHFTGTRFRGRG-1=RG
13 10 12 neeqtrrd KHLWHFTGTRFRGRFRG-1
14 1 2 3 4 trlcoat KHLWHFTG-1TRFRG-1RFG-1A
15 5 6 9 13 14 syl121anc KHLWHFTGTRFRGRFG-1A