Step |
Hyp |
Ref |
Expression |
1 |
|
trljco.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
trljco.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
trljco.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
trljco.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → 𝐾 ∈ HL ) |
6 |
5
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → 𝐾 ∈ Lat ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
8 |
7 2 3 4
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
9 |
8
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
10 |
7 2 3 4
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
11 |
10
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
12 |
7 1
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) = ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
13 |
6 9 11 12
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) = ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
14 |
1 2 3 4
|
trljco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ 𝐹 ) ) ) = ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
15 |
14
|
3com23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ 𝐹 ) ) ) = ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
16 |
13 15
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) = ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ 𝐹 ) ) ) ) |
17 |
1 2 3 4
|
trljco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
18 |
2 3
|
ltrncom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |
19 |
18
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( 𝑅 ‘ ( 𝐺 ∘ 𝐹 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ 𝐹 ) ) ) ) |
21 |
16 17 20
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( 𝑅 ‘ 𝐺 ) ∨ ( 𝑅 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |