Metamath Proof Explorer


Theorem trljco2

Description: Trace joined with trace of composition. (Contributed by NM, 16-Jun-2013)

Ref Expression
Hypotheses trljco.j ˙ = join K
trljco.h H = LHyp K
trljco.t T = LTrn K W
trljco.r R = trL K W
Assertion trljco2 K HL W H F T G T R F ˙ R F G = R G ˙ R F G

Proof

Step Hyp Ref Expression
1 trljco.j ˙ = join K
2 trljco.h H = LHyp K
3 trljco.t T = LTrn K W
4 trljco.r R = trL K W
5 simp1l K HL W H F T G T K HL
6 5 hllatd K HL W H F T G T K Lat
7 eqid Base K = Base K
8 7 2 3 4 trlcl K HL W H F T R F Base K
9 8 3adant3 K HL W H F T G T R F Base K
10 7 2 3 4 trlcl K HL W H G T R G Base K
11 10 3adant2 K HL W H F T G T R G Base K
12 7 1 latjcom K Lat R F Base K R G Base K R F ˙ R G = R G ˙ R F
13 6 9 11 12 syl3anc K HL W H F T G T R F ˙ R G = R G ˙ R F
14 1 2 3 4 trljco K HL W H G T F T R G ˙ R G F = R G ˙ R F
15 14 3com23 K HL W H F T G T R G ˙ R G F = R G ˙ R F
16 13 15 eqtr4d K HL W H F T G T R F ˙ R G = R G ˙ R G F
17 1 2 3 4 trljco K HL W H F T G T R F ˙ R F G = R F ˙ R G
18 2 3 ltrncom K HL W H F T G T F G = G F
19 18 fveq2d K HL W H F T G T R F G = R G F
20 19 oveq2d K HL W H F T G T R G ˙ R F G = R G ˙ R G F
21 16 17 20 3eqtr4d K HL W H F T G T R F ˙ R F G = R G ˙ R F G