Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tendof.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
tendof.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | ||
tendof.e | ⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | ||
Assertion | tendocl | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑆 ‘ 𝐹 ) ∈ 𝑇 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendof.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | tendof.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | tendof.e | ⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | |
4 | 1 2 3 | tendof | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → 𝑆 : 𝑇 ⟶ 𝑇 ) |
5 | 4 | 3adant3 | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → 𝑆 : 𝑇 ⟶ 𝑇 ) |
6 | simp3 | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ 𝑇 ) | |
7 | 5 6 | ffvelrnd | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑆 ‘ 𝐹 ) ∈ 𝑇 ) |