Metamath Proof Explorer


Theorem tendocl

Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendof.h 𝐻 = ( LHyp ‘ 𝐾 )
tendof.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendof.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendocl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑆𝐸𝐹𝑇 ) → ( 𝑆𝐹 ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 tendof.h 𝐻 = ( LHyp ‘ 𝐾 )
2 tendof.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 tendof.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 1 2 3 tendof ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑆𝐸 ) → 𝑆 : 𝑇𝑇 )
5 4 3adant3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑆𝐸𝐹𝑇 ) → 𝑆 : 𝑇𝑇 )
6 simp3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑆𝐸𝐹𝑇 ) → 𝐹𝑇 )
7 5 6 ffvelrnd ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑆𝐸𝐹𝑇 ) → ( 𝑆𝐹 ) ∈ 𝑇 )