Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tendof.h | |- H = ( LHyp ` K ) |
|
tendof.t | |- T = ( ( LTrn ` K ) ` W ) |
||
tendof.e | |- E = ( ( TEndo ` K ) ` W ) |
||
Assertion | tendocl | |- ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> ( S ` F ) e. T ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendof.h | |- H = ( LHyp ` K ) |
|
2 | tendof.t | |- T = ( ( LTrn ` K ) ` W ) |
|
3 | tendof.e | |- E = ( ( TEndo ` K ) ` W ) |
|
4 | 1 2 3 | tendof | |- ( ( ( K e. V /\ W e. H ) /\ S e. E ) -> S : T --> T ) |
5 | 4 | 3adant3 | |- ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> S : T --> T ) |
6 | simp3 | |- ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> F e. T ) |
|
7 | 5 6 | ffvelrnd | |- ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> ( S ` F ) e. T ) |