Metamath Proof Explorer


Theorem tendocl

Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendof.h
|- H = ( LHyp ` K )
tendof.t
|- T = ( ( LTrn ` K ) ` W )
tendof.e
|- E = ( ( TEndo ` K ) ` W )
Assertion tendocl
|- ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> ( S ` F ) e. T )

Proof

Step Hyp Ref Expression
1 tendof.h
 |-  H = ( LHyp ` K )
2 tendof.t
 |-  T = ( ( LTrn ` K ) ` W )
3 tendof.e
 |-  E = ( ( TEndo ` K ) ` W )
4 1 2 3 tendof
 |-  ( ( ( K e. V /\ W e. H ) /\ S e. E ) -> S : T --> T )
5 4 3adant3
 |-  ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> S : T --> T )
6 simp3
 |-  ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> F e. T )
7 5 6 ffvelrnd
 |-  ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> ( S ` F ) e. T )