Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tendof.h | |- H = ( LHyp ` K ) |
|
| tendof.t | |- T = ( ( LTrn ` K ) ` W ) |
||
| tendof.e | |- E = ( ( TEndo ` K ) ` W ) |
||
| Assertion | tendocl | |- ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> ( S ` F ) e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendof.h | |- H = ( LHyp ` K ) |
|
| 2 | tendof.t | |- T = ( ( LTrn ` K ) ` W ) |
|
| 3 | tendof.e | |- E = ( ( TEndo ` K ) ` W ) |
|
| 4 | 1 2 3 | tendof | |- ( ( ( K e. V /\ W e. H ) /\ S e. E ) -> S : T --> T ) |
| 5 | 4 | 3adant3 | |- ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> S : T --> T ) |
| 6 | simp3 | |- ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> F e. T ) |
|
| 7 | 5 6 | ffvelcdmd | |- ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> ( S ` F ) e. T ) |