| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoplcbv.p |
⊢ 𝑃 = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
| 2 |
|
fveq1 |
⊢ ( 𝑠 = 𝑢 → ( 𝑠 ‘ 𝑓 ) = ( 𝑢 ‘ 𝑓 ) ) |
| 3 |
2
|
coeq1d |
⊢ ( 𝑠 = 𝑢 → ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) = ( ( 𝑢 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) |
| 4 |
3
|
mpteq2dv |
⊢ ( 𝑠 = 𝑢 → ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) = ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
| 5 |
|
fveq1 |
⊢ ( 𝑡 = 𝑣 → ( 𝑡 ‘ 𝑓 ) = ( 𝑣 ‘ 𝑓 ) ) |
| 6 |
5
|
coeq2d |
⊢ ( 𝑡 = 𝑣 → ( ( 𝑢 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) = ( ( 𝑢 ‘ 𝑓 ) ∘ ( 𝑣 ‘ 𝑓 ) ) ) |
| 7 |
6
|
mpteq2dv |
⊢ ( 𝑡 = 𝑣 → ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) = ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑓 ) ∘ ( 𝑣 ‘ 𝑓 ) ) ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝑢 ‘ 𝑓 ) = ( 𝑢 ‘ 𝑔 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝑣 ‘ 𝑓 ) = ( 𝑣 ‘ 𝑔 ) ) |
| 10 |
8 9
|
coeq12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑢 ‘ 𝑓 ) ∘ ( 𝑣 ‘ 𝑓 ) ) = ( ( 𝑢 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) ) |
| 11 |
10
|
cbvmptv |
⊢ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑓 ) ∘ ( 𝑣 ‘ 𝑓 ) ) ) = ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) ) |
| 12 |
7 11
|
eqtrdi |
⊢ ( 𝑡 = 𝑣 → ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) = ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) ) ) |
| 13 |
4 12
|
cbvmpov |
⊢ ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) = ( 𝑢 ∈ 𝐸 , 𝑣 ∈ 𝐸 ↦ ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) ) ) |
| 14 |
1 13
|
eqtri |
⊢ 𝑃 = ( 𝑢 ∈ 𝐸 , 𝑣 ∈ 𝐸 ↦ ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) ) ) |