Metamath Proof Explorer


Theorem tendoplcbv

Description: Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypothesis tendoplcbv.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
Assertion tendoplcbv 𝑃 = ( 𝑢𝐸 , 𝑣𝐸 ↦ ( 𝑔𝑇 ↦ ( ( 𝑢𝑔 ) ∘ ( 𝑣𝑔 ) ) ) )

Proof

Step Hyp Ref Expression
1 tendoplcbv.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
2 fveq1 ( 𝑠 = 𝑢 → ( 𝑠𝑓 ) = ( 𝑢𝑓 ) )
3 2 coeq1d ( 𝑠 = 𝑢 → ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) = ( ( 𝑢𝑓 ) ∘ ( 𝑡𝑓 ) ) )
4 3 mpteq2dv ( 𝑠 = 𝑢 → ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) = ( 𝑓𝑇 ↦ ( ( 𝑢𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
5 fveq1 ( 𝑡 = 𝑣 → ( 𝑡𝑓 ) = ( 𝑣𝑓 ) )
6 5 coeq2d ( 𝑡 = 𝑣 → ( ( 𝑢𝑓 ) ∘ ( 𝑡𝑓 ) ) = ( ( 𝑢𝑓 ) ∘ ( 𝑣𝑓 ) ) )
7 6 mpteq2dv ( 𝑡 = 𝑣 → ( 𝑓𝑇 ↦ ( ( 𝑢𝑓 ) ∘ ( 𝑡𝑓 ) ) ) = ( 𝑓𝑇 ↦ ( ( 𝑢𝑓 ) ∘ ( 𝑣𝑓 ) ) ) )
8 fveq2 ( 𝑓 = 𝑔 → ( 𝑢𝑓 ) = ( 𝑢𝑔 ) )
9 fveq2 ( 𝑓 = 𝑔 → ( 𝑣𝑓 ) = ( 𝑣𝑔 ) )
10 8 9 coeq12d ( 𝑓 = 𝑔 → ( ( 𝑢𝑓 ) ∘ ( 𝑣𝑓 ) ) = ( ( 𝑢𝑔 ) ∘ ( 𝑣𝑔 ) ) )
11 10 cbvmptv ( 𝑓𝑇 ↦ ( ( 𝑢𝑓 ) ∘ ( 𝑣𝑓 ) ) ) = ( 𝑔𝑇 ↦ ( ( 𝑢𝑔 ) ∘ ( 𝑣𝑔 ) ) )
12 7 11 eqtrdi ( 𝑡 = 𝑣 → ( 𝑓𝑇 ↦ ( ( 𝑢𝑓 ) ∘ ( 𝑡𝑓 ) ) ) = ( 𝑔𝑇 ↦ ( ( 𝑢𝑔 ) ∘ ( 𝑣𝑔 ) ) ) )
13 4 12 cbvmpov ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) ) = ( 𝑢𝐸 , 𝑣𝐸 ↦ ( 𝑔𝑇 ↦ ( ( 𝑢𝑔 ) ∘ ( 𝑣𝑔 ) ) ) )
14 1 13 eqtri 𝑃 = ( 𝑢𝐸 , 𝑣𝐸 ↦ ( 𝑔𝑇 ↦ ( ( 𝑢𝑔 ) ∘ ( 𝑣𝑔 ) ) ) )