| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoplcbv.p |
|- P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
| 2 |
|
fveq1 |
|- ( s = u -> ( s ` f ) = ( u ` f ) ) |
| 3 |
2
|
coeq1d |
|- ( s = u -> ( ( s ` f ) o. ( t ` f ) ) = ( ( u ` f ) o. ( t ` f ) ) ) |
| 4 |
3
|
mpteq2dv |
|- ( s = u -> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) = ( f e. T |-> ( ( u ` f ) o. ( t ` f ) ) ) ) |
| 5 |
|
fveq1 |
|- ( t = v -> ( t ` f ) = ( v ` f ) ) |
| 6 |
5
|
coeq2d |
|- ( t = v -> ( ( u ` f ) o. ( t ` f ) ) = ( ( u ` f ) o. ( v ` f ) ) ) |
| 7 |
6
|
mpteq2dv |
|- ( t = v -> ( f e. T |-> ( ( u ` f ) o. ( t ` f ) ) ) = ( f e. T |-> ( ( u ` f ) o. ( v ` f ) ) ) ) |
| 8 |
|
fveq2 |
|- ( f = g -> ( u ` f ) = ( u ` g ) ) |
| 9 |
|
fveq2 |
|- ( f = g -> ( v ` f ) = ( v ` g ) ) |
| 10 |
8 9
|
coeq12d |
|- ( f = g -> ( ( u ` f ) o. ( v ` f ) ) = ( ( u ` g ) o. ( v ` g ) ) ) |
| 11 |
10
|
cbvmptv |
|- ( f e. T |-> ( ( u ` f ) o. ( v ` f ) ) ) = ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) ) |
| 12 |
7 11
|
eqtrdi |
|- ( t = v -> ( f e. T |-> ( ( u ` f ) o. ( t ` f ) ) ) = ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) ) ) |
| 13 |
4 12
|
cbvmpov |
|- ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) = ( u e. E , v e. E |-> ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) ) ) |
| 14 |
1 13
|
eqtri |
|- P = ( u e. E , v e. E |-> ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) ) ) |