Metamath Proof Explorer


Theorem tendoplcbv

Description: Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypothesis tendoplcbv.p
|- P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) )
Assertion tendoplcbv
|- P = ( u e. E , v e. E |-> ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) ) )

Proof

Step Hyp Ref Expression
1 tendoplcbv.p
 |-  P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) )
2 fveq1
 |-  ( s = u -> ( s ` f ) = ( u ` f ) )
3 2 coeq1d
 |-  ( s = u -> ( ( s ` f ) o. ( t ` f ) ) = ( ( u ` f ) o. ( t ` f ) ) )
4 3 mpteq2dv
 |-  ( s = u -> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) = ( f e. T |-> ( ( u ` f ) o. ( t ` f ) ) ) )
5 fveq1
 |-  ( t = v -> ( t ` f ) = ( v ` f ) )
6 5 coeq2d
 |-  ( t = v -> ( ( u ` f ) o. ( t ` f ) ) = ( ( u ` f ) o. ( v ` f ) ) )
7 6 mpteq2dv
 |-  ( t = v -> ( f e. T |-> ( ( u ` f ) o. ( t ` f ) ) ) = ( f e. T |-> ( ( u ` f ) o. ( v ` f ) ) ) )
8 fveq2
 |-  ( f = g -> ( u ` f ) = ( u ` g ) )
9 fveq2
 |-  ( f = g -> ( v ` f ) = ( v ` g ) )
10 8 9 coeq12d
 |-  ( f = g -> ( ( u ` f ) o. ( v ` f ) ) = ( ( u ` g ) o. ( v ` g ) ) )
11 10 cbvmptv
 |-  ( f e. T |-> ( ( u ` f ) o. ( v ` f ) ) ) = ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) )
12 7 11 eqtrdi
 |-  ( t = v -> ( f e. T |-> ( ( u ` f ) o. ( t ` f ) ) ) = ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) ) )
13 4 12 cbvmpov
 |-  ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) = ( u e. E , v e. E |-> ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) ) )
14 1 13 eqtri
 |-  P = ( u e. E , v e. E |-> ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) ) )