| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoplcbv.p |
|- P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
| 2 |
|
tendopl2.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 3 |
|
fveq1 |
|- ( u = U -> ( u ` g ) = ( U ` g ) ) |
| 4 |
3
|
coeq1d |
|- ( u = U -> ( ( u ` g ) o. ( v ` g ) ) = ( ( U ` g ) o. ( v ` g ) ) ) |
| 5 |
4
|
mpteq2dv |
|- ( u = U -> ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) ) = ( g e. T |-> ( ( U ` g ) o. ( v ` g ) ) ) ) |
| 6 |
|
fveq1 |
|- ( v = V -> ( v ` g ) = ( V ` g ) ) |
| 7 |
6
|
coeq2d |
|- ( v = V -> ( ( U ` g ) o. ( v ` g ) ) = ( ( U ` g ) o. ( V ` g ) ) ) |
| 8 |
7
|
mpteq2dv |
|- ( v = V -> ( g e. T |-> ( ( U ` g ) o. ( v ` g ) ) ) = ( g e. T |-> ( ( U ` g ) o. ( V ` g ) ) ) ) |
| 9 |
1
|
tendoplcbv |
|- P = ( u e. E , v e. E |-> ( g e. T |-> ( ( u ` g ) o. ( v ` g ) ) ) ) |
| 10 |
2
|
fvexi |
|- T e. _V |
| 11 |
10
|
mptex |
|- ( g e. T |-> ( ( U ` g ) o. ( V ` g ) ) ) e. _V |
| 12 |
5 8 9 11
|
ovmpo |
|- ( ( U e. E /\ V e. E ) -> ( U P V ) = ( g e. T |-> ( ( U ` g ) o. ( V ` g ) ) ) ) |