Metamath Proof Explorer


Theorem tendoplcbv

Description: Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypothesis tendoplcbv.p P=sE,tEfTsftf
Assertion tendoplcbv P=uE,vEgTugvg

Proof

Step Hyp Ref Expression
1 tendoplcbv.p P=sE,tEfTsftf
2 fveq1 s=usf=uf
3 2 coeq1d s=usftf=uftf
4 3 mpteq2dv s=ufTsftf=fTuftf
5 fveq1 t=vtf=vf
6 5 coeq2d t=vuftf=ufvf
7 6 mpteq2dv t=vfTuftf=fTufvf
8 fveq2 f=guf=ug
9 fveq2 f=gvf=vg
10 8 9 coeq12d f=gufvf=ugvg
11 10 cbvmptv fTufvf=gTugvg
12 7 11 eqtrdi t=vfTuftf=gTugvg
13 4 12 cbvmpov sE,tEfTsftf=uE,vEgTugvg
14 1 13 eqtri P=uE,vEgTugvg