Metamath Proof Explorer


Theorem dvavsca

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafvsca.h H = LHyp K
dvafvsca.t T = LTrn K W
dvafvsca.e E = TEndo K W
dvafvsca.u U = DVecA K W
dvafvsca.s · ˙ = U
Assertion dvavsca K V W H R E F T R · ˙ F = R F

Proof

Step Hyp Ref Expression
1 dvafvsca.h H = LHyp K
2 dvafvsca.t T = LTrn K W
3 dvafvsca.e E = TEndo K W
4 dvafvsca.u U = DVecA K W
5 dvafvsca.s · ˙ = U
6 1 2 3 4 5 dvafvsca K V W H · ˙ = s E , f T s f
7 6 oveqd K V W H R · ˙ F = R s E , f T s f F
8 fveq1 s = R s f = R f
9 fveq2 f = F R f = R F
10 eqid s E , f T s f = s E , f T s f
11 fvex R F V
12 8 9 10 11 ovmpo R E F T R s E , f T s f F = R F
13 7 12 sylan9eq K V W H R E F T R · ˙ F = R F