Metamath Proof Explorer


Theorem dvafvsca

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafvsca.h H = LHyp K
dvafvsca.t T = LTrn K W
dvafvsca.e E = TEndo K W
dvafvsca.u U = DVecA K W
dvafvsca.s · ˙ = U
Assertion dvafvsca K V W H · ˙ = s E , f T s f

Proof

Step Hyp Ref Expression
1 dvafvsca.h H = LHyp K
2 dvafvsca.t T = LTrn K W
3 dvafvsca.e E = TEndo K W
4 dvafvsca.u U = DVecA K W
5 dvafvsca.s · ˙ = U
6 eqid EDRing K W = EDRing K W
7 1 2 3 6 4 dvaset K V W H U = Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s E , f T s f
8 7 fveq2d K V W H U = Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s E , f T s f
9 3 fvexi E V
10 2 fvexi T V
11 9 10 mpoex s E , f T s f V
12 eqid Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s E , f T s f = Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s E , f T s f
13 12 lmodvsca s E , f T s f V s E , f T s f = Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s E , f T s f
14 11 13 ax-mp s E , f T s f = Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s E , f T s f
15 8 5 14 3eqtr4g K V W H · ˙ = s E , f T s f