Step |
Hyp |
Ref |
Expression |
1 |
|
dvafvsca.h |
|- H = ( LHyp ` K ) |
2 |
|
dvafvsca.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
dvafvsca.e |
|- E = ( ( TEndo ` K ) ` W ) |
4 |
|
dvafvsca.u |
|- U = ( ( DVecA ` K ) ` W ) |
5 |
|
dvafvsca.s |
|- .x. = ( .s ` U ) |
6 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
7 |
1 2 3 6 4
|
dvaset |
|- ( ( K e. V /\ W e. H ) -> U = ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) ) |
8 |
7
|
fveq2d |
|- ( ( K e. V /\ W e. H ) -> ( .s ` U ) = ( .s ` ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) ) ) |
9 |
3
|
fvexi |
|- E e. _V |
10 |
2
|
fvexi |
|- T e. _V |
11 |
9 10
|
mpoex |
|- ( s e. E , f e. T |-> ( s ` f ) ) e. _V |
12 |
|
eqid |
|- ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) = ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) |
13 |
12
|
lmodvsca |
|- ( ( s e. E , f e. T |-> ( s ` f ) ) e. _V -> ( s e. E , f e. T |-> ( s ` f ) ) = ( .s ` ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) ) ) |
14 |
11 13
|
ax-mp |
|- ( s e. E , f e. T |-> ( s ` f ) ) = ( .s ` ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) ) |
15 |
8 5 14
|
3eqtr4g |
|- ( ( K e. V /\ W e. H ) -> .x. = ( s e. E , f e. T |-> ( s ` f ) ) ) |