Metamath Proof Explorer


Theorem dvafvsca

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafvsca.h 𝐻 = ( LHyp ‘ 𝐾 )
dvafvsca.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvafvsca.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvafvsca.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvafvsca.s · = ( ·𝑠𝑈 )
Assertion dvafvsca ( ( 𝐾𝑉𝑊𝐻 ) → · = ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) )

Proof

Step Hyp Ref Expression
1 dvafvsca.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvafvsca.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvafvsca.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvafvsca.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
5 dvafvsca.s · = ( ·𝑠𝑈 )
6 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 3 6 4 dvaset ( ( 𝐾𝑉𝑊𝐻 ) → 𝑈 = ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } ) )
8 7 fveq2d ( ( 𝐾𝑉𝑊𝐻 ) → ( ·𝑠𝑈 ) = ( ·𝑠 ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } ) ) )
9 3 fvexi 𝐸 ∈ V
10 2 fvexi 𝑇 ∈ V
11 9 10 mpoex ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ∈ V
12 eqid ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } )
13 12 lmodvsca ( ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ∈ V → ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) = ( ·𝑠 ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } ) ) )
14 11 13 ax-mp ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) = ( ·𝑠 ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑇 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑇 , 𝑔𝑇 ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) ⟩ } ) )
15 8 5 14 3eqtr4g ( ( 𝐾𝑉𝑊𝐻 ) → · = ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) )