Step |
Hyp |
Ref |
Expression |
1 |
|
dvafvsca.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvafvsca.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvafvsca.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvafvsca.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvafvsca.s |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
6 |
1 2 3 4 5
|
dvafvsca |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → · = ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) ) |
7 |
6
|
oveqd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 · 𝐹 ) = ( 𝑅 ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) 𝐹 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑠 = 𝑅 → ( 𝑠 ‘ 𝑓 ) = ( 𝑅 ‘ 𝑓 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑅 ‘ 𝑓 ) = ( 𝑅 ‘ 𝐹 ) ) |
10 |
|
eqid |
⊢ ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) = ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) |
11 |
|
fvex |
⊢ ( 𝑅 ‘ 𝐹 ) ∈ V |
12 |
8 9 10 11
|
ovmpo |
⊢ ( ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |
13 |
7 12
|
sylan9eq |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → ( 𝑅 · 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |