Metamath Proof Explorer


Theorem dvavsca

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafvsca.h 𝐻 = ( LHyp ‘ 𝐾 )
dvafvsca.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvafvsca.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvafvsca.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvafvsca.s · = ( ·𝑠𝑈 )
Assertion dvavsca ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇 ) ) → ( 𝑅 · 𝐹 ) = ( 𝑅𝐹 ) )

Proof

Step Hyp Ref Expression
1 dvafvsca.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvafvsca.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvafvsca.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvafvsca.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
5 dvafvsca.s · = ( ·𝑠𝑈 )
6 1 2 3 4 5 dvafvsca ( ( 𝐾𝑉𝑊𝐻 ) → · = ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) )
7 6 oveqd ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑅 · 𝐹 ) = ( 𝑅 ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) 𝐹 ) )
8 fveq1 ( 𝑠 = 𝑅 → ( 𝑠𝑓 ) = ( 𝑅𝑓 ) )
9 fveq2 ( 𝑓 = 𝐹 → ( 𝑅𝑓 ) = ( 𝑅𝐹 ) )
10 eqid ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) = ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) )
11 fvex ( 𝑅𝐹 ) ∈ V
12 8 9 10 11 ovmpo ( ( 𝑅𝐸𝐹𝑇 ) → ( 𝑅 ( 𝑠𝐸 , 𝑓𝑇 ↦ ( 𝑠𝑓 ) ) 𝐹 ) = ( 𝑅𝐹 ) )
13 7 12 sylan9eq ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇 ) ) → ( 𝑅 · 𝐹 ) = ( 𝑅𝐹 ) )