Metamath Proof Explorer


Theorem tendospcl

Description: Closure of endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)

Ref Expression
Hypotheses tendosp.h 𝐻 = ( LHyp ‘ 𝐾 )
tendosp.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendosp.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendospcl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑈𝐸𝐹𝑇 ) → ( 𝑈𝐹 ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 tendosp.h 𝐻 = ( LHyp ‘ 𝐾 )
2 tendosp.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 tendosp.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 1 2 3 tendocl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑈𝐸𝐹𝑇 ) → ( 𝑈𝐹 ) ∈ 𝑇 )