Description: Closure of endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tendosp.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| tendosp.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | ||
| tendosp.e | ⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | ||
| Assertion | tendospcl | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑈 ‘ 𝐹 ) ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendosp.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 2 | tendosp.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
| 3 | tendosp.e | ⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | |
| 4 | 1 2 3 | tendocl | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑈 ‘ 𝐹 ) ∈ 𝑇 ) |