Description: Closure of endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tendosp.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
tendosp.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | ||
tendosp.e | ⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | ||
Assertion | tendospcl | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑈 ‘ 𝐹 ) ∈ 𝑇 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendosp.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | tendosp.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | tendosp.e | ⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | |
4 | 1 2 3 | tendocl | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑈 ‘ 𝐹 ) ∈ 𝑇 ) |