Description: Closure of endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tendosp.h | |- H = ( LHyp ` K ) |
|
| tendosp.t | |- T = ( ( LTrn ` K ) ` W ) |
||
| tendosp.e | |- E = ( ( TEndo ` K ) ` W ) |
||
| Assertion | tendospcl | |- ( ( ( K e. V /\ W e. H ) /\ U e. E /\ F e. T ) -> ( U ` F ) e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendosp.h | |- H = ( LHyp ` K ) |
|
| 2 | tendosp.t | |- T = ( ( LTrn ` K ) ` W ) |
|
| 3 | tendosp.e | |- E = ( ( TEndo ` K ) ` W ) |
|
| 4 | 1 2 3 | tendocl | |- ( ( ( K e. V /\ W e. H ) /\ U e. E /\ F e. T ) -> ( U ` F ) e. T ) |