Metamath Proof Explorer


Theorem tendospcl

Description: Closure of endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)

Ref Expression
Hypotheses tendosp.h
|- H = ( LHyp ` K )
tendosp.t
|- T = ( ( LTrn ` K ) ` W )
tendosp.e
|- E = ( ( TEndo ` K ) ` W )
Assertion tendospcl
|- ( ( ( K e. V /\ W e. H ) /\ U e. E /\ F e. T ) -> ( U ` F ) e. T )

Proof

Step Hyp Ref Expression
1 tendosp.h
 |-  H = ( LHyp ` K )
2 tendosp.t
 |-  T = ( ( LTrn ` K ) ` W )
3 tendosp.e
 |-  E = ( ( TEndo ` K ) ` W )
4 1 2 3 tendocl
 |-  ( ( ( K e. V /\ W e. H ) /\ U e. E /\ F e. T ) -> ( U ` F ) e. T )