Metamath Proof Explorer


Theorem tendospass

Description: Associative law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)

Ref Expression
Hypotheses tendosp.h 𝐻 = ( LHyp ‘ 𝐾 )
tendosp.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendosp.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendospass ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) ) → ( ( 𝑈𝑉 ) ‘ 𝐹 ) = ( 𝑈 ‘ ( 𝑉𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 tendosp.h 𝐻 = ( LHyp ‘ 𝐾 )
2 tendosp.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 tendosp.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 1 2 3 tendof ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ 𝑉𝐸 ) → 𝑉 : 𝑇𝑇 )
5 4 3ad2antr2 ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) ) → 𝑉 : 𝑇𝑇 )
6 simpr3 ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) ) → 𝐹𝑇 )
7 fvco3 ( ( 𝑉 : 𝑇𝑇𝐹𝑇 ) → ( ( 𝑈𝑉 ) ‘ 𝐹 ) = ( 𝑈 ‘ ( 𝑉𝐹 ) ) )
8 5 6 7 syl2anc ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) ) → ( ( 𝑈𝑉 ) ‘ 𝐹 ) = ( 𝑈 ‘ ( 𝑉𝐹 ) ) )