Step |
Hyp |
Ref |
Expression |
1 |
|
tendosp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tendosp.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
tendosp.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
1 2 3
|
tendof |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑉 ∈ 𝐸 ) → 𝑉 : 𝑇 ⟶ 𝑇 ) |
5 |
4
|
3ad2antr2 |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → 𝑉 : 𝑇 ⟶ 𝑇 ) |
6 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → 𝐹 ∈ 𝑇 ) |
7 |
|
fvco3 |
⊢ ( ( 𝑉 : 𝑇 ⟶ 𝑇 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑈 ∘ 𝑉 ) ‘ 𝐹 ) = ( 𝑈 ‘ ( 𝑉 ‘ 𝐹 ) ) ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → ( ( 𝑈 ∘ 𝑉 ) ‘ 𝐹 ) = ( 𝑈 ‘ ( 𝑉 ‘ 𝐹 ) ) ) |