Metamath Proof Explorer


Theorem tendospdi1

Description: Forward distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)

Ref Expression
Hypotheses tendosp.h 𝐻 = ( LHyp ‘ 𝐾 )
tendosp.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendosp.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendospdi1 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑈𝐸𝐹𝑇𝐺𝑇 ) ) → ( 𝑈 ‘ ( 𝐹𝐺 ) ) = ( ( 𝑈𝐹 ) ∘ ( 𝑈𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 tendosp.h 𝐻 = ( LHyp ‘ 𝐾 )
2 tendosp.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 tendosp.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 simpll ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑈𝐸𝐹𝑇𝐺𝑇 ) ) → 𝐾𝑉 )
5 simplr ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑈𝐸𝐹𝑇𝐺𝑇 ) ) → 𝑊𝐻 )
6 simpr1 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑈𝐸𝐹𝑇𝐺𝑇 ) ) → 𝑈𝐸 )
7 simpr2 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑈𝐸𝐹𝑇𝐺𝑇 ) ) → 𝐹𝑇 )
8 simpr3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑈𝐸𝐹𝑇𝐺𝑇 ) ) → 𝐺𝑇 )
9 1 2 3 tendovalco ( ( ( 𝐾𝑉𝑊𝐻𝑈𝐸 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝑈 ‘ ( 𝐹𝐺 ) ) = ( ( 𝑈𝐹 ) ∘ ( 𝑈𝐺 ) ) )
10 4 5 6 7 8 9 syl32anc ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑈𝐸𝐹𝑇𝐺𝑇 ) ) → ( 𝑈 ‘ ( 𝐹𝐺 ) ) = ( ( 𝑈𝐹 ) ∘ ( 𝑈𝐺 ) ) )