Step |
Hyp |
Ref |
Expression |
1 |
|
tendosp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tendosp.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
tendosp.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐾 ∈ 𝑉 ) |
5 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝑊 ∈ 𝐻 ) |
6 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝑈 ∈ 𝐸 ) |
7 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐹 ∈ 𝑇 ) |
8 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐺 ∈ 𝑇 ) |
9 |
1 2 3
|
tendovalco |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑈 ‘ 𝐺 ) ) ) |
10 |
4 5 6 7 8 9
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑈 ‘ 𝐺 ) ) ) |