| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendosp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
tendosp.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
tendosp.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 5 |
1 2 3
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑆 ‘ 𝐹 ) ∈ 𝑇 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 7 |
6 1 2
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ‘ 𝐹 ) ∈ 𝑇 ) → ( 𝑆 ‘ 𝐹 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 8 |
4 5 7
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑆 ‘ 𝐹 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 9 |
|
f1ococnv1 |
⊢ ( ( 𝑆 ‘ 𝐹 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ 𝐹 ) ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ 𝐹 ) ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 11 |
10
|
coeq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ 𝐹 ) ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) = ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) ) |
| 12 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → 𝑆 ∈ 𝐸 ) |
| 13 |
6 1 3
|
tendoid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝑆 ‘ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 14 |
4 12 13
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑆 ‘ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 15 |
6 1 2
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 16 |
15
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 17 |
|
f1ococnv2 |
⊢ ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 19 |
18
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑆 ‘ ( 𝐹 ∘ ◡ 𝐹 ) ) = ( 𝑆 ‘ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
| 20 |
|
f1ococnv2 |
⊢ ( ( 𝑆 ‘ 𝐹 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → ( ( 𝑆 ‘ 𝐹 ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 21 |
8 20
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑆 ‘ 𝐹 ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 22 |
14 19 21
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑆 ‘ 𝐹 ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑆 ‘ ( 𝐹 ∘ ◡ 𝐹 ) ) ) |
| 23 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ 𝑇 ) |
| 24 |
1 2
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
| 25 |
24
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
| 26 |
1 2 3
|
tendospdi1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) ) → ( 𝑆 ‘ ( 𝐹 ∘ ◡ 𝐹 ) ) = ( ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) |
| 27 |
4 12 23 25 26
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑆 ‘ ( 𝐹 ∘ ◡ 𝐹 ) ) = ( ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) |
| 28 |
22 27
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑆 ‘ 𝐹 ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) = ( ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) |
| 29 |
28
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( ( 𝑆 ‘ 𝐹 ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) ) = ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) ) |
| 30 |
|
coass |
⊢ ( ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ 𝐹 ) ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) = ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( ( 𝑆 ‘ 𝐹 ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) ) |
| 31 |
|
coass |
⊢ ( ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ 𝐹 ) ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) = ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) |
| 32 |
29 30 31
|
3eqtr4g |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ 𝐹 ) ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) = ( ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ 𝐹 ) ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) |
| 33 |
10
|
coeq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ 𝐹 ) ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) = ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) ) |
| 34 |
1 2 3
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝑆 ‘ ◡ 𝐹 ) ∈ 𝑇 ) |
| 35 |
25 34
|
syld3an3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑆 ‘ ◡ 𝐹 ) ∈ 𝑇 ) |
| 36 |
6 1 2
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ‘ ◡ 𝐹 ) ∈ 𝑇 ) → ( 𝑆 ‘ ◡ 𝐹 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 37 |
4 35 36
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑆 ‘ ◡ 𝐹 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 38 |
|
f1of |
⊢ ( ( 𝑆 ‘ ◡ 𝐹 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → ( 𝑆 ‘ ◡ 𝐹 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) |
| 39 |
|
fcoi2 |
⊢ ( ( 𝑆 ‘ ◡ 𝐹 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) = ( 𝑆 ‘ ◡ 𝐹 ) ) |
| 40 |
37 38 39
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ ( 𝑆 ‘ ◡ 𝐹 ) ) = ( 𝑆 ‘ ◡ 𝐹 ) ) |
| 41 |
32 33 40
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( ◡ ( 𝑆 ‘ 𝐹 ) ∘ ( 𝑆 ‘ 𝐹 ) ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑆 ‘ ◡ 𝐹 ) ) |
| 42 |
1 2
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ‘ 𝐹 ) ∈ 𝑇 ) → ◡ ( 𝑆 ‘ 𝐹 ) ∈ 𝑇 ) |
| 43 |
4 5 42
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ◡ ( 𝑆 ‘ 𝐹 ) ∈ 𝑇 ) |
| 44 |
6 1 2
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ◡ ( 𝑆 ‘ 𝐹 ) ∈ 𝑇 ) → ◡ ( 𝑆 ‘ 𝐹 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 45 |
4 43 44
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ◡ ( 𝑆 ‘ 𝐹 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 46 |
|
f1of |
⊢ ( ◡ ( 𝑆 ‘ 𝐹 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → ◡ ( 𝑆 ‘ 𝐹 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) |
| 47 |
|
fcoi2 |
⊢ ( ◡ ( 𝑆 ‘ 𝐹 ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) = ◡ ( 𝑆 ‘ 𝐹 ) ) |
| 48 |
45 46 47
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( I ↾ ( Base ‘ 𝐾 ) ) ∘ ◡ ( 𝑆 ‘ 𝐹 ) ) = ◡ ( 𝑆 ‘ 𝐹 ) ) |
| 49 |
11 41 48
|
3eqtr3rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ◡ ( 𝑆 ‘ 𝐹 ) = ( 𝑆 ‘ ◡ 𝐹 ) ) |