Metamath Proof Explorer


Theorem tendospdi2

Description: Reverse distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)

Ref Expression
Hypotheses tendospd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendosp.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
Assertion tendospdi2 ( ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 tendospd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
2 tendosp.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
3 2 1 tendopl2 ( ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) )