Description: Reverse distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tendospd.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
tendosp.p | ⊢ 𝑃 = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) | ||
Assertion | tendospdi2 | ⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendospd.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
2 | tendosp.p | ⊢ 𝑃 = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) | |
3 | 2 1 | tendopl2 | ⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |