Metamath Proof Explorer


Theorem tendospdi2

Description: Reverse distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)

Ref Expression
Hypotheses tendospd.t
|- T = ( ( LTrn ` K ) ` W )
tendosp.p
|- P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) )
Assertion tendospdi2
|- ( ( U e. E /\ V e. E /\ F e. T ) -> ( ( U P V ) ` F ) = ( ( U ` F ) o. ( V ` F ) ) )

Proof

Step Hyp Ref Expression
1 tendospd.t
 |-  T = ( ( LTrn ` K ) ` W )
2 tendosp.p
 |-  P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) )
3 2 1 tendopl2
 |-  ( ( U e. E /\ V e. E /\ F e. T ) -> ( ( U P V ) ` F ) = ( ( U ` F ) o. ( V ` F ) ) )