Metamath Proof Explorer


Theorem tendospdi2

Description: Reverse distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)

Ref Expression
Hypotheses tendospd.t T = LTrn K W
tendosp.p P = s E , t E f T s f t f
Assertion tendospdi2 U E V E F T U P V F = U F V F

Proof

Step Hyp Ref Expression
1 tendospd.t T = LTrn K W
2 tendosp.p P = s E , t E f T s f t f
3 2 1 tendopl2 U E V E F T U P V F = U F V F