Metamath Proof Explorer


Theorem tendospcanN

Description: Cancellation law for trace-preserving endomorphism values (used as scalar product). (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses tendospcan.b B=BaseK
tendospcan.h H=LHypK
tendospcan.t T=LTrnKW
tendospcan.e E=TEndoKW
tendospcan.o O=fTIB
Assertion tendospcanN KHLWHSESOFTGTSF=SGF=G

Proof

Step Hyp Ref Expression
1 tendospcan.b B=BaseK
2 tendospcan.h H=LHypK
3 tendospcan.t T=LTrnKW
4 tendospcan.e E=TEndoKW
5 tendospcan.o O=fTIB
6 2 3 4 tendocnv KHLWHSEGTSG-1=SG-1
7 6 3adant3l KHLWHSEFTGTSG-1=SG-1
8 7 coeq2d KHLWHSEFTGTSFSG-1=SFSG-1
9 simp1 KHLWHSEFTGTKHLWH
10 simp2 KHLWHSEFTGTSE
11 simp3l KHLWHSEFTGTFT
12 simp3r KHLWHSEFTGTGT
13 2 3 ltrncnv KHLWHGTG-1T
14 9 12 13 syl2anc KHLWHSEFTGTG-1T
15 2 3 4 tendospdi1 KHLWHSEFTG-1TSFG-1=SFSG-1
16 9 10 11 14 15 syl13anc KHLWHSEFTGTSFG-1=SFSG-1
17 8 16 eqtr4d KHLWHSEFTGTSFSG-1=SFG-1
18 17 adantr KHLWHSEFTGTFG-1IBSFSG-1=SFG-1
19 18 eqeq1d KHLWHSEFTGTFG-1IBSFSG-1=IBSFG-1=IB
20 simpl1 KHLWHSEFTGTFG-1IBKHLWH
21 simpl2 KHLWHSEFTGTFG-1IBSE
22 simpl3l KHLWHSEFTGTFG-1IBFT
23 2 3 4 tendocl KHLWHSEFTSFT
24 20 21 22 23 syl3anc KHLWHSEFTGTFG-1IBSFT
25 simpl3r KHLWHSEFTGTFG-1IBGT
26 2 3 4 tendocl KHLWHSEGTSGT
27 20 21 25 26 syl3anc KHLWHSEFTGTFG-1IBSGT
28 1 2 3 ltrncoidN KHLWHSFTSGTSFSG-1=IBSF=SG
29 20 24 27 28 syl3anc KHLWHSEFTGTFG-1IBSFSG-1=IBSF=SG
30 20 25 13 syl2anc KHLWHSEFTGTFG-1IBG-1T
31 2 3 ltrnco KHLWHFTG-1TFG-1T
32 20 22 30 31 syl3anc KHLWHSEFTGTFG-1IBFG-1T
33 simpr KHLWHSEFTGTFG-1IBFG-1IB
34 1 2 3 4 5 tendoid0 KHLWHSEFG-1TFG-1IBSFG-1=IBS=O
35 20 21 32 33 34 syl112anc KHLWHSEFTGTFG-1IBSFG-1=IBS=O
36 19 29 35 3bitr3d KHLWHSEFTGTFG-1IBSF=SGS=O
37 36 biimpd KHLWHSEFTGTFG-1IBSF=SGS=O
38 37 impancom KHLWHSEFTGTSF=SGFG-1IBS=O
39 38 necon1d KHLWHSEFTGTSF=SGSOFG-1=IB
40 simpl1 KHLWHSEFTGTSF=SGKHLWH
41 simpl3l KHLWHSEFTGTSF=SGFT
42 simpl3r KHLWHSEFTGTSF=SGGT
43 1 2 3 ltrncoidN KHLWHFTGTFG-1=IBF=G
44 40 41 42 43 syl3anc KHLWHSEFTGTSF=SGFG-1=IBF=G
45 39 44 sylibd KHLWHSEFTGTSF=SGSOF=G
46 45 3exp1 KHLWHSEFTGTSF=SGSOF=G
47 46 com24 KHLWHSF=SGFTGTSESOF=G
48 47 imp5a KHLWHSF=SGFTGTSESOF=G
49 48 com24 KHLWHSESOFTGTSF=SGF=G
50 49 3imp KHLWHSESOFTGTSF=SGF=G
51 fveq2 F=GSF=SG
52 50 51 impbid1 KHLWHSESOFTGTSF=SGF=G