Step |
Hyp |
Ref |
Expression |
1 |
|
ltrn1o.b |
|
2 |
|
ltrn1o.h |
|
3 |
|
ltrn1o.t |
|
4 |
|
simpl1 |
|
5 |
|
simpl3 |
|
6 |
1 2 3
|
ltrn1o |
|
7 |
4 5 6
|
syl2anc |
|
8 |
|
f1ococnv1 |
|
9 |
7 8
|
syl |
|
10 |
9
|
coeq2d |
|
11 |
|
simpl2 |
|
12 |
1 2 3
|
ltrn1o |
|
13 |
4 11 12
|
syl2anc |
|
14 |
|
f1of |
|
15 |
|
fcoi1 |
|
16 |
13 14 15
|
3syl |
|
17 |
10 16
|
eqtr2d |
|
18 |
|
coass |
|
19 |
17 18
|
eqtr4di |
|
20 |
|
simpr |
|
21 |
20
|
coeq1d |
|
22 |
|
f1of |
|
23 |
|
fcoi2 |
|
24 |
7 22 23
|
3syl |
|
25 |
21 24
|
eqtrd |
|
26 |
19 25
|
eqtrd |
|
27 |
|
simpr |
|
28 |
27
|
coeq1d |
|
29 |
|
simpl1 |
|
30 |
|
simpl3 |
|
31 |
29 30 6
|
syl2anc |
|
32 |
|
f1ococnv2 |
|
33 |
31 32
|
syl |
|
34 |
28 33
|
eqtrd |
|
35 |
26 34
|
impbida |
|