Metamath Proof Explorer


Theorem tendoid0

Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013)

Ref Expression
Hypotheses tendoid0.b B=BaseK
tendoid0.h H=LHypK
tendoid0.t T=LTrnKW
tendoid0.e E=TEndoKW
tendoid0.o O=fTIB
Assertion tendoid0 KHLWHUEFTFIBUF=IBU=O

Proof

Step Hyp Ref Expression
1 tendoid0.b B=BaseK
2 tendoid0.h H=LHypK
3 tendoid0.t T=LTrnKW
4 tendoid0.e E=TEndoKW
5 tendoid0.o O=fTIB
6 simp3l KHLWHUEFTFIBFT
7 5 1 tendo02 FTOF=IB
8 6 7 syl KHLWHUEFTFIBOF=IB
9 8 eqeq2d KHLWHUEFTFIBUF=OFUF=IB
10 simpl1 KHLWHUEFTFIBUF=OFKHLWH
11 simpl2 KHLWHUEFTFIBUF=OFUE
12 1 2 3 4 5 tendo0cl KHLWHOE
13 10 12 syl KHLWHUEFTFIBUF=OFOE
14 simpr KHLWHUEFTFIBUF=OFUF=OF
15 simpl3l KHLWHUEFTFIBUF=OFFT
16 simpl3r KHLWHUEFTFIBUF=OFFIB
17 1 2 3 4 tendocan KHLWHUEOEUF=OFFTFIBU=O
18 10 11 13 14 15 16 17 syl132anc KHLWHUEFTFIBUF=OFU=O
19 18 ex KHLWHUEFTFIBUF=OFU=O
20 9 19 sylbird KHLWHUEFTFIBUF=IBU=O
21 fveq1 U=OUF=OF
22 21 eqeq1d U=OUF=IBOF=IB
23 8 22 syl5ibrcom KHLWHUEFTFIBU=OUF=IB
24 20 23 impbid KHLWHUEFTFIBUF=IBU=O