Metamath Proof Explorer


Theorem tendo0mul

Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 1-Aug-2013)

Ref Expression
Hypotheses tendoid0.b B = Base K
tendoid0.h H = LHyp K
tendoid0.t T = LTrn K W
tendoid0.e E = TEndo K W
tendoid0.o O = f T I B
Assertion tendo0mul K HL W H U E O U = O

Proof

Step Hyp Ref Expression
1 tendoid0.b B = Base K
2 tendoid0.h H = LHyp K
3 tendoid0.t T = LTrn K W
4 tendoid0.e E = TEndo K W
5 tendoid0.o O = f T I B
6 1 2 3 cdlemftr0 K HL W H g T g I B
7 6 adantr K HL W H U E g T g I B
8 simpll K HL W H U E g T g I B K HL W H
9 1 2 3 4 5 tendo0cl K HL W H O E
10 9 ad2antrr K HL W H U E g T g I B O E
11 simplr K HL W H U E g T g I B U E
12 2 4 tendococl K HL W H O E U E O U E
13 8 10 11 12 syl3anc K HL W H U E g T g I B O U E
14 simprl K HL W H U E g T g I B g T
15 2 3 4 tendocl K HL W H U E g T U g T
16 8 11 14 15 syl3anc K HL W H U E g T g I B U g T
17 5 1 tendo02 U g T O U g = I B
18 16 17 syl K HL W H U E g T g I B O U g = I B
19 2 3 4 tendocoval K HL W H O E U E g T O U g = O U g
20 8 10 11 14 19 syl121anc K HL W H U E g T g I B O U g = O U g
21 5 1 tendo02 g T O g = I B
22 21 ad2antrl K HL W H U E g T g I B O g = I B
23 18 20 22 3eqtr4d K HL W H U E g T g I B O U g = O g
24 simpr K HL W H U E g T g I B g T g I B
25 1 2 3 4 tendocan K HL W H O U E O E O U g = O g g T g I B O U = O
26 8 13 10 23 24 25 syl131anc K HL W H U E g T g I B O U = O
27 7 26 rexlimddv K HL W H U E O U = O