Metamath Proof Explorer


Theorem tendo0mulr

Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses tendoid0.b B = Base K
tendoid0.h H = LHyp K
tendoid0.t T = LTrn K W
tendoid0.e E = TEndo K W
tendoid0.o O = f T I B
Assertion tendo0mulr K HL W H U E U O = O

Proof

Step Hyp Ref Expression
1 tendoid0.b B = Base K
2 tendoid0.h H = LHyp K
3 tendoid0.t T = LTrn K W
4 tendoid0.e E = TEndo K W
5 tendoid0.o O = f T I B
6 1 2 3 cdlemftr0 K HL W H g T g I B
7 6 adantr K HL W H U E g T g I B
8 simpll K HL W H U E g T g I B K HL W H
9 simplr K HL W H U E g T g I B U E
10 1 2 3 4 5 tendo0cl K HL W H O E
11 10 ad2antrr K HL W H U E g T g I B O E
12 2 4 tendococl K HL W H U E O E U O E
13 8 9 11 12 syl3anc K HL W H U E g T g I B U O E
14 5 1 tendo02 g T O g = I B
15 14 ad2antrl K HL W H U E g T g I B O g = I B
16 15 fveq2d K HL W H U E g T g I B U O g = U I B
17 1 2 4 tendoid K HL W H U E U I B = I B
18 17 adantr K HL W H U E g T g I B U I B = I B
19 16 18 eqtrd K HL W H U E g T g I B U O g = I B
20 simprl K HL W H U E g T g I B g T
21 2 3 4 tendocoval K HL W H U E O E g T U O g = U O g
22 8 9 11 20 21 syl121anc K HL W H U E g T g I B U O g = U O g
23 19 22 15 3eqtr4d K HL W H U E g T g I B U O g = O g
24 simpr K HL W H U E g T g I B g T g I B
25 1 2 3 4 tendocan K HL W H U O E O E U O g = O g g T g I B U O = O
26 8 13 11 23 24 25 syl131anc K HL W H U E g T g I B U O = O
27 7 26 rexlimddv K HL W H U E U O = O