Step |
Hyp |
Ref |
Expression |
1 |
|
tendoid0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
tendoid0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
tendoid0.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendoid0.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
tendoid0.o |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
6 |
1 2 3
|
cdlemftr0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∃ 𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵 ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) → ∃ 𝑔 ∈ 𝑇 𝑔 ≠ ( I ↾ 𝐵 ) ) |
8 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → 𝑈 ∈ 𝐸 ) |
10 |
1 2 3 4 5
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ 𝐸 ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → 𝑂 ∈ 𝐸 ) |
12 |
2 4
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ) → ( 𝑈 ∘ 𝑂 ) ∈ 𝐸 ) |
13 |
8 9 11 12
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈 ∘ 𝑂 ) ∈ 𝐸 ) |
14 |
5 1
|
tendo02 |
⊢ ( 𝑔 ∈ 𝑇 → ( 𝑂 ‘ 𝑔 ) = ( I ↾ 𝐵 ) ) |
15 |
14
|
ad2antrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑂 ‘ 𝑔 ) = ( I ↾ 𝐵 ) ) |
16 |
15
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈 ‘ ( 𝑂 ‘ 𝑔 ) ) = ( 𝑈 ‘ ( I ↾ 𝐵 ) ) ) |
17 |
1 2 4
|
tendoid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) → ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ) |
19 |
16 18
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈 ‘ ( 𝑂 ‘ 𝑔 ) ) = ( I ↾ 𝐵 ) ) |
20 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → 𝑔 ∈ 𝑇 ) |
21 |
2 3 4
|
tendocoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝑈 ∘ 𝑂 ) ‘ 𝑔 ) = ( 𝑈 ‘ ( 𝑂 ‘ 𝑔 ) ) ) |
22 |
8 9 11 20 21
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝑈 ∘ 𝑂 ) ‘ 𝑔 ) = ( 𝑈 ‘ ( 𝑂 ‘ 𝑔 ) ) ) |
23 |
19 22 15
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝑈 ∘ 𝑂 ) ‘ 𝑔 ) = ( 𝑂 ‘ 𝑔 ) ) |
24 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) |
25 |
1 2 3 4
|
tendocan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑈 ∘ 𝑂 ) ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ∧ ( ( 𝑈 ∘ 𝑂 ) ‘ 𝑔 ) = ( 𝑂 ‘ 𝑔 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈 ∘ 𝑂 ) = 𝑂 ) |
26 |
8 13 11 23 24 25
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈 ∘ 𝑂 ) = 𝑂 ) |
27 |
7 26
|
rexlimddv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) → ( 𝑈 ∘ 𝑂 ) = 𝑂 ) |