Metamath Proof Explorer


Theorem tendo0mulr

Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses tendoid0.b 𝐵 = ( Base ‘ 𝐾 )
tendoid0.h 𝐻 = ( LHyp ‘ 𝐾 )
tendoid0.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendoid0.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
tendoid0.o 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
Assertion tendo0mulr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) → ( 𝑈𝑂 ) = 𝑂 )

Proof

Step Hyp Ref Expression
1 tendoid0.b 𝐵 = ( Base ‘ 𝐾 )
2 tendoid0.h 𝐻 = ( LHyp ‘ 𝐾 )
3 tendoid0.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 tendoid0.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
5 tendoid0.o 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
6 1 2 3 cdlemftr0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵 ) )
7 6 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) → ∃ 𝑔𝑇 𝑔 ≠ ( I ↾ 𝐵 ) )
8 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simplr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → 𝑈𝐸 )
10 1 2 3 4 5 tendo0cl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑂𝐸 )
11 10 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → 𝑂𝐸 )
12 2 4 tendococl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸𝑂𝐸 ) → ( 𝑈𝑂 ) ∈ 𝐸 )
13 8 9 11 12 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈𝑂 ) ∈ 𝐸 )
14 5 1 tendo02 ( 𝑔𝑇 → ( 𝑂𝑔 ) = ( I ↾ 𝐵 ) )
15 14 ad2antrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑂𝑔 ) = ( I ↾ 𝐵 ) )
16 15 fveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈 ‘ ( 𝑂𝑔 ) ) = ( 𝑈 ‘ ( I ↾ 𝐵 ) ) )
17 1 2 4 tendoid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) → ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) )
18 17 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈 ‘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) )
19 16 18 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈 ‘ ( 𝑂𝑔 ) ) = ( I ↾ 𝐵 ) )
20 simprl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → 𝑔𝑇 )
21 2 3 4 tendocoval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑂𝐸 ) ∧ 𝑔𝑇 ) → ( ( 𝑈𝑂 ) ‘ 𝑔 ) = ( 𝑈 ‘ ( 𝑂𝑔 ) ) )
22 8 9 11 20 21 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝑈𝑂 ) ‘ 𝑔 ) = ( 𝑈 ‘ ( 𝑂𝑔 ) ) )
23 19 22 15 3eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝑈𝑂 ) ‘ 𝑔 ) = ( 𝑂𝑔 ) )
24 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) )
25 1 2 3 4 tendocan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑈𝑂 ) ∈ 𝐸𝑂𝐸 ∧ ( ( 𝑈𝑂 ) ‘ 𝑔 ) = ( 𝑂𝑔 ) ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈𝑂 ) = 𝑂 )
26 8 13 11 23 24 25 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) ∧ ( 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈𝑂 ) = 𝑂 )
27 7 26 rexlimddv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) → ( 𝑈𝑂 ) = 𝑂 )