| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendo0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
tendo0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
tendo0.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
tendo0.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
tendo0.o |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
| 6 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 7 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
1 2 3
|
idltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
| 11 |
5
|
tendo0cbv |
⊢ 𝑂 = ( 𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
| 12 |
10 11
|
fmptd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 : 𝑇 ⟶ 𝑇 ) |
| 13 |
1 2 3 4 5
|
tendo0co2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑂 ‘ ( 𝑔 ∘ ℎ ) ) = ( ( 𝑂 ‘ 𝑔 ) ∘ ( 𝑂 ‘ ℎ ) ) ) |
| 14 |
1 2 3 4 5 6 7
|
tendo0tp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑂 ‘ 𝑔 ) ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) |
| 15 |
6 2 3 7 4 8 12 13 14
|
istendod |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ 𝐸 ) |