Description: Define additive identity for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tendo0cbv.o | ⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) | |
Assertion | tendo0cbv | ⊢ 𝑂 = ( 𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendo0cbv.o | ⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) | |
2 | eqidd | ⊢ ( 𝑓 = 𝑔 → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) | |
3 | 2 | cbvmptv | ⊢ ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) = ( 𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
4 | 1 3 | eqtri | ⊢ 𝑂 = ( 𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |