Metamath Proof Explorer


Theorem tendo0cbv

Description: Define additive identity for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypothesis tendo0cbv.o
|- O = ( f e. T |-> ( _I |` B ) )
Assertion tendo0cbv
|- O = ( g e. T |-> ( _I |` B ) )

Proof

Step Hyp Ref Expression
1 tendo0cbv.o
 |-  O = ( f e. T |-> ( _I |` B ) )
2 eqidd
 |-  ( f = g -> ( _I |` B ) = ( _I |` B ) )
3 2 cbvmptv
 |-  ( f e. T |-> ( _I |` B ) ) = ( g e. T |-> ( _I |` B ) )
4 1 3 eqtri
 |-  O = ( g e. T |-> ( _I |` B ) )