Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tendo0cbv.o | |- O = ( f e. T |-> ( _I |` B ) ) |
|
| tendo02.b | |- B = ( Base ` K ) |
||
| Assertion | tendo02 | |- ( F e. T -> ( O ` F ) = ( _I |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendo0cbv.o | |- O = ( f e. T |-> ( _I |` B ) ) |
|
| 2 | tendo02.b | |- B = ( Base ` K ) |
|
| 3 | eqidd | |- ( g = F -> ( _I |` B ) = ( _I |` B ) ) |
|
| 4 | 1 | tendo0cbv | |- O = ( g e. T |-> ( _I |` B ) ) |
| 5 | funi | |- Fun _I |
|
| 6 | 2 | fvexi | |- B e. _V |
| 7 | resfunexg | |- ( ( Fun _I /\ B e. _V ) -> ( _I |` B ) e. _V ) |
|
| 8 | 5 6 7 | mp2an | |- ( _I |` B ) e. _V |
| 9 | 3 4 8 | fvmpt | |- ( F e. T -> ( O ` F ) = ( _I |` B ) ) |