Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tendo0cbv.o | |- O = ( f e. T |-> ( _I |` B ) ) |
|
tendo02.b | |- B = ( Base ` K ) |
||
Assertion | tendo02 | |- ( F e. T -> ( O ` F ) = ( _I |` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendo0cbv.o | |- O = ( f e. T |-> ( _I |` B ) ) |
|
2 | tendo02.b | |- B = ( Base ` K ) |
|
3 | eqidd | |- ( g = F -> ( _I |` B ) = ( _I |` B ) ) |
|
4 | 1 | tendo0cbv | |- O = ( g e. T |-> ( _I |` B ) ) |
5 | funi | |- Fun _I |
|
6 | 2 | fvexi | |- B e. _V |
7 | resfunexg | |- ( ( Fun _I /\ B e. _V ) -> ( _I |` B ) e. _V ) |
|
8 | 5 6 7 | mp2an | |- ( _I |` B ) e. _V |
9 | 3 4 8 | fvmpt | |- ( F e. T -> ( O ` F ) = ( _I |` B ) ) |