Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tendo0cbv.o | ⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) | |
| tendo02.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | ||
| Assertion | tendo02 | ⊢ ( 𝐹 ∈ 𝑇 → ( 𝑂 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendo0cbv.o | ⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) | |
| 2 | tendo02.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 3 | eqidd | ⊢ ( 𝑔 = 𝐹 → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) | |
| 4 | 1 | tendo0cbv | ⊢ 𝑂 = ( 𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
| 5 | funi | ⊢ Fun I | |
| 6 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 7 | resfunexg | ⊢ ( ( Fun I ∧ 𝐵 ∈ V ) → ( I ↾ 𝐵 ) ∈ V ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( I ↾ 𝐵 ) ∈ V |
| 9 | 3 4 8 | fvmpt | ⊢ ( 𝐹 ∈ 𝑇 → ( 𝑂 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) |