Metamath Proof Explorer


Theorem tendo02

Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses tendo0cbv.o O=fTIB
tendo02.b B=BaseK
Assertion tendo02 FTOF=IB

Proof

Step Hyp Ref Expression
1 tendo0cbv.o O=fTIB
2 tendo02.b B=BaseK
3 eqidd g=FIB=IB
4 1 tendo0cbv O=gTIB
5 funi FunI
6 2 fvexi BV
7 resfunexg FunIBVIBV
8 5 6 7 mp2an IBV
9 3 4 8 fvmpt FTOF=IB