Metamath Proof Explorer


Theorem tendo0cl

Description: The additive identity is a trace-preserving endormorphism. (Contributed by NM, 12-Jun-2013)

Ref Expression
Hypotheses tendo0.b B = Base K
tendo0.h H = LHyp K
tendo0.t T = LTrn K W
tendo0.e E = TEndo K W
tendo0.o O = f T I B
Assertion tendo0cl K HL W H O E

Proof

Step Hyp Ref Expression
1 tendo0.b B = Base K
2 tendo0.h H = LHyp K
3 tendo0.t T = LTrn K W
4 tendo0.e E = TEndo K W
5 tendo0.o O = f T I B
6 eqid K = K
7 eqid trL K W = trL K W
8 id K HL W H K HL W H
9 1 2 3 idltrn K HL W H I B T
10 9 adantr K HL W H g T I B T
11 5 tendo0cbv O = g T I B
12 10 11 fmptd K HL W H O : T T
13 1 2 3 4 5 tendo0co2 K HL W H g T h T O g h = O g O h
14 1 2 3 4 5 6 7 tendo0tp K HL W H g T trL K W O g K trL K W g
15 6 2 3 7 4 8 12 13 14 istendod K HL W H O E