Metamath Proof Explorer


Theorem tendo0pl

Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013)

Ref Expression
Hypotheses tendo0.b B = Base K
tendo0.h H = LHyp K
tendo0.t T = LTrn K W
tendo0.e E = TEndo K W
tendo0.o O = f T I B
tendo0pl.p P = s E , t E f T s f t f
Assertion tendo0pl K HL W H S E O P S = S

Proof

Step Hyp Ref Expression
1 tendo0.b B = Base K
2 tendo0.h H = LHyp K
3 tendo0.t T = LTrn K W
4 tendo0.e E = TEndo K W
5 tendo0.o O = f T I B
6 tendo0pl.p P = s E , t E f T s f t f
7 simpl K HL W H S E K HL W H
8 1 2 3 4 5 tendo0cl K HL W H O E
9 8 adantr K HL W H S E O E
10 simpr K HL W H S E S E
11 2 3 4 6 tendoplcl K HL W H O E S E O P S E
12 7 9 10 11 syl3anc K HL W H S E O P S E
13 simpll K HL W H S E g T K HL W H
14 13 8 syl K HL W H S E g T O E
15 simplr K HL W H S E g T S E
16 simpr K HL W H S E g T g T
17 6 3 tendopl2 O E S E g T O P S g = O g S g
18 14 15 16 17 syl3anc K HL W H S E g T O P S g = O g S g
19 5 1 tendo02 g T O g = I B
20 19 adantl K HL W H S E g T O g = I B
21 20 coeq1d K HL W H S E g T O g S g = I B S g
22 2 3 4 tendocl K HL W H S E g T S g T
23 22 3expa K HL W H S E g T S g T
24 1 2 3 ltrn1o K HL W H S g T S g : B 1-1 onto B
25 13 23 24 syl2anc K HL W H S E g T S g : B 1-1 onto B
26 f1of S g : B 1-1 onto B S g : B B
27 fcoi2 S g : B B I B S g = S g
28 25 26 27 3syl K HL W H S E g T I B S g = S g
29 18 21 28 3eqtrd K HL W H S E g T O P S g = S g
30 29 ralrimiva K HL W H S E g T O P S g = S g
31 2 3 4 tendoeq1 K HL W H O P S E S E g T O P S g = S g O P S = S
32 7 12 10 30 31 syl121anc K HL W H S E O P S = S