Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
tendo0plr
Next ⟩
tendoicbv
Metamath Proof Explorer
Ascii
Unicode
Theorem
tendo0plr
Description:
Property of the additive identity endormorphism.
(Contributed by
NM
, 21-Feb-2014)
Ref
Expression
Hypotheses
tendo0.b
⊢
B
=
Base
K
tendo0.h
⊢
H
=
LHyp
⁡
K
tendo0.t
⊢
T
=
LTrn
⁡
K
⁡
W
tendo0.e
⊢
E
=
TEndo
⁡
K
⁡
W
tendo0.o
⊢
O
=
f
∈
T
⟼
I
↾
B
tendo0pl.p
⊢
P
=
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
Assertion
tendo0plr
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
→
S
P
O
=
S
Proof
Step
Hyp
Ref
Expression
1
tendo0.b
⊢
B
=
Base
K
2
tendo0.h
⊢
H
=
LHyp
⁡
K
3
tendo0.t
⊢
T
=
LTrn
⁡
K
⁡
W
4
tendo0.e
⊢
E
=
TEndo
⁡
K
⁡
W
5
tendo0.o
⊢
O
=
f
∈
T
⟼
I
↾
B
6
tendo0pl.p
⊢
P
=
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
7
1
2
3
4
5
tendo0cl
⊢
K
∈
HL
∧
W
∈
H
→
O
∈
E
8
7
adantr
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
→
O
∈
E
9
2
3
4
6
tendoplcom
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
∧
O
∈
E
→
S
P
O
=
O
P
S
10
8
9
mpd3an3
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
→
S
P
O
=
O
P
S
11
1
2
3
4
5
6
tendo0pl
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
→
O
P
S
=
S
12
10
11
eqtrd
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
→
S
P
O
=
S