Metamath Proof Explorer


Theorem tendo0plr

Description: Property of the additive identity endormorphism. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses tendo0.b B = Base K
tendo0.h H = LHyp K
tendo0.t T = LTrn K W
tendo0.e E = TEndo K W
tendo0.o O = f T I B
tendo0pl.p P = s E , t E f T s f t f
Assertion tendo0plr K HL W H S E S P O = S

Proof

Step Hyp Ref Expression
1 tendo0.b B = Base K
2 tendo0.h H = LHyp K
3 tendo0.t T = LTrn K W
4 tendo0.e E = TEndo K W
5 tendo0.o O = f T I B
6 tendo0pl.p P = s E , t E f T s f t f
7 1 2 3 4 5 tendo0cl K HL W H O E
8 7 adantr K HL W H S E O E
9 2 3 4 6 tendoplcom K HL W H S E O E S P O = O P S
10 8 9 mpd3an3 K HL W H S E S P O = O P S
11 1 2 3 4 5 6 tendo0pl K HL W H S E O P S = S
12 10 11 eqtrd K HL W H S E S P O = S