Step |
Hyp |
Ref |
Expression |
1 |
|
tendo0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
tendo0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
tendo0.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendo0.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
tendo0.o |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
6 |
|
tendo0tp.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
7 |
|
tendo0tp.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
5 1
|
tendo02 |
⊢ ( 𝐹 ∈ 𝑇 → ( 𝑂 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑂 ‘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
10 |
9
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝑂 ‘ 𝐹 ) ) = ( 𝑅 ‘ ( I ↾ 𝐵 ) ) ) |
11 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
12 |
1 11 2 7
|
trlid0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 ‘ ( I ↾ 𝐵 ) ) = ( 0. ‘ 𝐾 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ ( I ↾ 𝐵 ) ) = ( 0. ‘ 𝐾 ) ) |
14 |
10 13
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝑂 ‘ 𝐹 ) ) = ( 0. ‘ 𝐾 ) ) |
15 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐾 ∈ OP ) |
17 |
1 2 3 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ) |
18 |
1 6 11
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ) → ( 0. ‘ 𝐾 ) ≤ ( 𝑅 ‘ 𝐹 ) ) |
19 |
16 17 18
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 0. ‘ 𝐾 ) ≤ ( 𝑅 ‘ 𝐹 ) ) |
20 |
14 19
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝑂 ‘ 𝐹 ) ) ≤ ( 𝑅 ‘ 𝐹 ) ) |