Metamath Proof Explorer


Theorem tendo0tp

Description: Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses tendo0.b 𝐵 = ( Base ‘ 𝐾 )
tendo0.h 𝐻 = ( LHyp ‘ 𝐾 )
tendo0.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendo0.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
tendo0.o 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
tendo0tp.l = ( le ‘ 𝐾 )
tendo0tp.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendo0tp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅 ‘ ( 𝑂𝐹 ) ) ( 𝑅𝐹 ) )

Proof

Step Hyp Ref Expression
1 tendo0.b 𝐵 = ( Base ‘ 𝐾 )
2 tendo0.h 𝐻 = ( LHyp ‘ 𝐾 )
3 tendo0.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 tendo0.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
5 tendo0.o 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
6 tendo0tp.l = ( le ‘ 𝐾 )
7 tendo0tp.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 5 1 tendo02 ( 𝐹𝑇 → ( 𝑂𝐹 ) = ( I ↾ 𝐵 ) )
9 8 adantl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑂𝐹 ) = ( I ↾ 𝐵 ) )
10 9 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅 ‘ ( 𝑂𝐹 ) ) = ( 𝑅 ‘ ( I ↾ 𝐵 ) ) )
11 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
12 1 11 2 7 trlid0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑅 ‘ ( I ↾ 𝐵 ) ) = ( 0. ‘ 𝐾 ) )
13 12 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅 ‘ ( I ↾ 𝐵 ) ) = ( 0. ‘ 𝐾 ) )
14 10 13 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅 ‘ ( 𝑂𝐹 ) ) = ( 0. ‘ 𝐾 ) )
15 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
16 15 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐾 ∈ OP )
17 1 2 3 7 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) ∈ 𝐵 )
18 1 6 11 op0le ( ( 𝐾 ∈ OP ∧ ( 𝑅𝐹 ) ∈ 𝐵 ) → ( 0. ‘ 𝐾 ) ( 𝑅𝐹 ) )
19 16 17 18 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 0. ‘ 𝐾 ) ( 𝑅𝐹 ) )
20 14 19 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅 ‘ ( 𝑂𝐹 ) ) ( 𝑅𝐹 ) )