| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tendo0.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | tendo0.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 3 |  | tendo0.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | tendo0.e | ⊢ 𝐸  =  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | tendo0.o | ⊢ 𝑂  =  ( 𝑓  ∈  𝑇  ↦  (  I   ↾  𝐵 ) ) | 
						
							| 6 |  | tendo0tp.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 7 |  | tendo0tp.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 | 5 1 | tendo02 | ⊢ ( 𝐹  ∈  𝑇  →  ( 𝑂 ‘ 𝐹 )  =  (  I   ↾  𝐵 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑂 ‘ 𝐹 )  =  (  I   ↾  𝐵 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ ( 𝑂 ‘ 𝐹 ) )  =  ( 𝑅 ‘ (  I   ↾  𝐵 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 12 | 1 11 2 7 | trlid0 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( 𝑅 ‘ (  I   ↾  𝐵 ) )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ (  I   ↾  𝐵 ) )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 14 | 10 13 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ ( 𝑂 ‘ 𝐹 ) )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 15 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  𝐾  ∈  OP ) | 
						
							| 17 | 1 2 3 7 | trlcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐹 )  ∈  𝐵 ) | 
						
							| 18 | 1 6 11 | op0le | ⊢ ( ( 𝐾  ∈  OP  ∧  ( 𝑅 ‘ 𝐹 )  ∈  𝐵 )  →  ( 0. ‘ 𝐾 )  ≤  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 19 | 16 17 18 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 0. ‘ 𝐾 )  ≤  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 20 | 14 19 | eqbrtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ ( 𝑂 ‘ 𝐹 ) )  ≤  ( 𝑅 ‘ 𝐹 ) ) |