| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendo0.b |
|- B = ( Base ` K ) |
| 2 |
|
tendo0.h |
|- H = ( LHyp ` K ) |
| 3 |
|
tendo0.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
tendo0.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 5 |
|
tendo0.o |
|- O = ( f e. T |-> ( _I |` B ) ) |
| 6 |
|
tendo0tp.l |
|- .<_ = ( le ` K ) |
| 7 |
|
tendo0tp.r |
|- R = ( ( trL ` K ) ` W ) |
| 8 |
5 1
|
tendo02 |
|- ( F e. T -> ( O ` F ) = ( _I |` B ) ) |
| 9 |
8
|
adantl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( O ` F ) = ( _I |` B ) ) |
| 10 |
9
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` ( O ` F ) ) = ( R ` ( _I |` B ) ) ) |
| 11 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 12 |
1 11 2 7
|
trlid0 |
|- ( ( K e. HL /\ W e. H ) -> ( R ` ( _I |` B ) ) = ( 0. ` K ) ) |
| 13 |
12
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` ( _I |` B ) ) = ( 0. ` K ) ) |
| 14 |
10 13
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` ( O ` F ) ) = ( 0. ` K ) ) |
| 15 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> K e. OP ) |
| 17 |
1 2 3 7
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) e. B ) |
| 18 |
1 6 11
|
op0le |
|- ( ( K e. OP /\ ( R ` F ) e. B ) -> ( 0. ` K ) .<_ ( R ` F ) ) |
| 19 |
16 17 18
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( 0. ` K ) .<_ ( R ` F ) ) |
| 20 |
14 19
|
eqbrtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` ( O ` F ) ) .<_ ( R ` F ) ) |