Step |
Hyp |
Ref |
Expression |
1 |
|
tendof.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tendof.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
tendof.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ) |
5 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝐹 ∈ 𝑇 ) → 𝑉 ∈ 𝐸 ) |
6 |
1 2 3
|
tendof |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑉 ∈ 𝐸 ) → 𝑉 : 𝑇 ⟶ 𝑇 ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝐹 ∈ 𝑇 ) → 𝑉 : 𝑇 ⟶ 𝑇 ) |
8 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ 𝑇 ) |
9 |
|
fvco3 |
⊢ ( ( 𝑉 : 𝑇 ⟶ 𝑇 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑈 ∘ 𝑉 ) ‘ 𝐹 ) = ( 𝑈 ‘ ( 𝑉 ‘ 𝐹 ) ) ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑈 ∘ 𝑉 ) ‘ 𝐹 ) = ( 𝑈 ‘ ( 𝑉 ‘ 𝐹 ) ) ) |