Metamath Proof Explorer


Theorem tendocoval

Description: Value of composition of endomorphisms in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendof.h 𝐻 = ( LHyp ‘ 𝐾 )
tendof.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendof.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendocoval ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( ( 𝑈𝑉 ) ‘ 𝐹 ) = ( 𝑈 ‘ ( 𝑉𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 tendof.h 𝐻 = ( LHyp ‘ 𝐾 )
2 tendof.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 tendof.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 simp1 ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( 𝐾𝑋𝑊𝐻 ) )
5 simp2r ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → 𝑉𝐸 )
6 1 2 3 tendof ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ 𝑉𝐸 ) → 𝑉 : 𝑇𝑇 )
7 4 5 6 syl2anc ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → 𝑉 : 𝑇𝑇 )
8 simp3 ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → 𝐹𝑇 )
9 fvco3 ( ( 𝑉 : 𝑇𝑇𝐹𝑇 ) → ( ( 𝑈𝑉 ) ‘ 𝐹 ) = ( 𝑈 ‘ ( 𝑉𝐹 ) ) )
10 7 8 9 syl2anc ( ( ( 𝐾𝑋𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( ( 𝑈𝑉 ) ‘ 𝐹 ) = ( 𝑈 ‘ ( 𝑉𝐹 ) ) )