Metamath Proof Explorer


Theorem tendoid

Description: The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013)

Ref Expression
Hypotheses tendoid.b B = Base K
tendoid.h H = LHyp K
tendoid.e E = TEndo K W
Assertion tendoid K HL W H S E S I B = I B

Proof

Step Hyp Ref Expression
1 tendoid.b B = Base K
2 tendoid.h H = LHyp K
3 tendoid.e E = TEndo K W
4 eqid LTrn K W = LTrn K W
5 1 2 4 idltrn K HL W H I B LTrn K W
6 5 adantr K HL W H S E I B LTrn K W
7 eqid K = K
8 eqid trL K W = trL K W
9 7 2 4 8 3 tendotp K HL W H S E I B LTrn K W trL K W S I B K trL K W I B
10 6 9 mpd3an3 K HL W H S E trL K W S I B K trL K W I B
11 eqid 0. K = 0. K
12 1 11 2 8 trlid0 K HL W H trL K W I B = 0. K
13 12 adantr K HL W H S E trL K W I B = 0. K
14 10 13 breqtrd K HL W H S E trL K W S I B K 0. K
15 hlop K HL K OP
16 15 ad2antrr K HL W H S E K OP
17 2 4 3 tendocl K HL W H S E I B LTrn K W S I B LTrn K W
18 6 17 mpd3an3 K HL W H S E S I B LTrn K W
19 1 2 4 8 trlcl K HL W H S I B LTrn K W trL K W S I B B
20 18 19 syldan K HL W H S E trL K W S I B B
21 1 7 11 ople0 K OP trL K W S I B B trL K W S I B K 0. K trL K W S I B = 0. K
22 16 20 21 syl2anc K HL W H S E trL K W S I B K 0. K trL K W S I B = 0. K
23 14 22 mpbid K HL W H S E trL K W S I B = 0. K
24 1 11 2 4 8 trlid0b K HL W H S I B LTrn K W S I B = I B trL K W S I B = 0. K
25 18 24 syldan K HL W H S E S I B = I B trL K W S I B = 0. K
26 23 25 mpbird K HL W H S E S I B = I B